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Abstract In this paper we study the component structure of random graphs with indepen-
dence between the edges. Under mild assumptions, we determine whether there is a gi-
ant component, and find its asymptotic size when it exists. We assume that the sequence
of matrices of edge probabilities converges to an appropriate limit object (a kernel), but
only in a very weak sense, namely in the cut metric. Our results thus generalize previous
results on the phase transition in the already very general inhomogeneous random graph
model introduced by the present authors in Random Struct. Algorithms 31:3–122 (2007), as
well as related results of Bollobás, Borgs, Chayes and Riordan (Ann. Probab. 38:150–183,
2010), all of which involve considerably stronger assumptions. We also prove correspond-
ing results for random hypergraphs; these generalize our results on the phase transition in
inhomogeneous random graphs with clustering (Random Struct. Algorithms, 2010, to ap-
pear).
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1 Introduction and Results

Throughout this paper we consider random graphs with independence between the edges.
Fixing the number n of vertices, the distribution of a random graph with this independence
property is of course determined by the edge probabilities, which we can view as forming
a symmetric n-by-n matrix with zeros on the diagonal. Here we are interested in the as-
ymptotic behaviour of the component structure as n → ∞, so we shall consider a sequence
of such matrices with n → ∞. As usual we are interested in properties that hold with high
probability, or whp, i.e., with probability tending to 1 as n → ∞. Our main focus is to de-
termine when there is whp a giant component, i.e., a component containing order n vertices.
When there is a giant component, we shall also find the limiting fraction of the vertices
that it contains. We use the following standard notation for functions f (n), g(n): f = O(g)

means f/g is bounded, f = �(g) means f = O(g) and g = O(f ), and f = o(g) means
f/g → 0 as n → ∞.

For the questions described above it is natural to focus on (extremely) sparse graphs,
with �(n) edges, so the natural normalization is to consider matrices An whose entries are
n times the corresponding edge probabilities. Thus the case in which each An has all (off-
diagonal) entries equal to some c > 0 corresponds to taking p = c/n in the classical model
G(n,p), where edges are present independently with the same probability p. Without im-
posing further conditions on the An, it seems difficult to prove asymptotic results, although
Alon [1] did so for some questions concerning connectedness. As in previous work, the nat-
ural additional assumption turns out to be convergence to a suitable limiting object, namely
a kernel, i.e., a symmetric non-negative integrable function on [0,1]2. Our aim is to relate
the asymptotic size of the giant component to a suitable function of this kernel.

The aim described above was also one of the aims of [6], and of Bollobás, Borgs, Chayes
and Riordan [7]. We shall prove a common generalization of the corresponding results from
these papers by weakening the assumptions: we shall work with convergence in the cut
metric (defined below) as in [7], while allowing unbounded matrices and kernels, as in [6].
It turns out that these very weak, natural assumptions suffice to allow us to relate the giant
component of the random graph to the kernel.

To state our results we shall need a few definitions. By a kernel on [0,1] we simply mean
an integrable, symmetric function κ : [0,1]2 → [0,∞). We regard kernels as elements of
L1, so two kernels that are equal almost everywhere are considered to be the same.

Throughout, An will denote a symmetric n-by-n matrix with non-negative entries. If
An = (aij ) is such a matrix, then there is a piecewise constant kernel κAn naturally associated
to An: this takes the value aij on the square ((i − 1)/n, i/n] × ((j − 1)/n, j/n]. We call κ

an n-by-n kernel if it is of the form κAn for some An.
There is a (sparse) random graph naturally associated to An, namely the graph G(An) =

G1/n(n,An). This graph has vertex set [n] = {1,2, . . . , n}, the events that different edges
are present are independent, and the probability that ij is present is min{aij /n,1}. If some
of the aii are non-zero then G(An) may contain loops; this will be irrelevant for us here,
since we study only the component structure of G(An). Often, it is convenient to consider
minor variants of these definitions: in the Poisson multi-graph variant, Gm

Po(An), the number
of copies of each possible edge ij is Poisson with mean aij /n. In the Poisson simple graph
variant, GPo(An), the probability that ij is present is 1 − exp(−aij /n); in both cases the
numbers of copies of different edges are independent. Thus GPo(An) is the simple graph
underlying Gm

Po(An). Most of the time it makes no difference which variant we consider.
Indeed, whenever aij < n/2, say, for all i and j , then

G(An) =d GPo(A
′
n) (1)
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where =d denotes equality in distribution, and A′
n is the matrix with entries

a′
ij = −n log(1 − aij /n) = aij + O(a2

ij /n). (2)

In the typical case considered here, the entries aij are small compared to n, so switching
between G(·) and GPo(·) corresponds to a minor change in the edge probability parameters.
Moreover, under the rather weak assumptions maxij aij < n/2 and

∑n

i,j=1 a3
ij = o(n3), the

random graphs G(An) and GPo(An) are asymptotically equivalent in the strong sense that
they can be coupled so that they are equal whp; see [18, Corollary 2.13].

Having described the limit object (a kernel), and the random graph, it remains to describe
the notion of convergence. In doing so it is convenient to consider somewhat more general
kernels.

Let (S,μ) be a probability space; most of the time we shall take S to be [0,1] (or (0,1])
with μ Lebesgue measure. A kernel on S is an integrable, symmetric function κ : S 2 →
[0,∞). Following Frieze and Kannan [16], for W ∈ L1(S 2) we define the cut norm ‖W‖�
of W by

‖W‖�,1 := sup
S,T

∣
∣
∣
∣

∫

S×T

W(x, y) dμ(x)dμ(y)

∣
∣
∣
∣, (3)

where the supremum is taken over all pairs of measurable subsets of S . Alternatively, one
can take

‖W‖�,2 := sup
‖f ‖∞,‖g‖∞≤1

∣
∣
∣
∣

∫

S 2
f (x)W(x, y)g(y) dμ(x)dμ(y)

∣
∣
∣
∣. (4)

In taking the supremum in (4) one can restrict to functions f and g taking only the values
±1; it follows that

‖W‖�,1 ≤ ‖W‖�,2 ≤ 4‖W‖�,1.

Thus the two norms ‖ · ‖�,1 and ‖ · ‖�,2 are equivalent, and it will almost never matter which
one we use. We shall write ‖ · ‖� for either norm, commenting in the few cases where the
choice matters. (There are further, equivalent versions of the cut-norm; see Borgs, Chayes,
Lovász, Sós and Vesztergombi [9].)

Note that for either definition of the cut norm we have
∣
∣
∣
∣

∫

W

∣
∣
∣
∣ ≤ ‖W‖� ≤ ‖W‖L1 .

The definition (4) is natural for a functional analyst: this norm is the dual of the projective
tensor product norm in L∞ ⊗̂ L∞, and is thus the injective tensor product norm in L1 ⊗̌ L1;
equivalently, it is equal to the operator norm of the corresponding integral operator
L∞ → L1. One advantage of this version is the simple “Banach module” property we shall
note later in (23). On the other hand, (3) is probably more familiar in combinatorics, and
(surprisingly) occasionally has a tiny advantage; see Sect. 3.

Given a kernel κ and a measure-preserving bijection τ : S → S , let κ(τ) be the kernel
defined by

κ(τ)(x, y) = κ(τ(x), τ (y));
we call κ(τ) a rearrangement of κ . We write κ ∼ κ ′ if κ ′ is a rearrangement of κ . Given two
kernels κ , κ ′ on [0,1], the cut metric of Borgs, Chayes, Lovász, Sós and Vesztergombi [9]
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is defined by

δ�(κ, κ ′) = inf
κ ′′∼κ ′ ‖κ − κ ′′‖�. (5)

If we wish to specify which version of the cut norm is involved, we write δ�,1 or δ�,2.
Usually, this is irrelevant.

As in [9], one can also define δ� using couplings between different kernels, rather than
rearrangements. In this case it is irrelevant that the kernels are on the same probability space.
In particular, we may regard a matrix An as a kernel on the discrete space with n equiprob-
able elements. Then (by an obvious coupling) δ�(An, κAn) = 0, where κAn is the n-by-n
kernel on [0,1] corresponding to An. Thus δ�(An, κ) = δ�(κAn, κ) for any kernel κ on
any probability space (S,μ). In the light of this we shall often identify a matrix with the
corresponding kernel on [0,1].

Throughout this paper, we shall consider sequences (An) of matrices such that for some
kernel κ we have δ�(An, κ) → 0. It follows from the results of [17] that for any kernel κ on
a probability space (S,μ), there exists a kernel κ ′ on [0,1] with δ�(κ, κ ′) = 0. Hence we
lose no generality by taking (S,μ) to be the standard ground space in which S = [0,1] (or
(0,1]) and μ is Lebesgue measure. In this case it is natural to identify An with κAn as above,
and we may use the more down-to-earth formula (5) as the definition of δ�.

To state our results we need two further definitions, from [6]. Given a kernel κ on a
probability space (S,μ), let Xκ be the multi-type Galton–Watson branching process defined
as follows. We start with a single particle in generation 0, whose type has the distribution μ.
A particle in generation t of type x gives rise to children in generation t + 1 whose types
form a Poisson process on S with intensity κ(x, y) dμ(y). The children of different particles
are independent, and independent of the history.

We shall also consider the branching processes Xκ (x), x ∈ S , defined as above except
that Xκ (x) starts with a single particle of the given type x.

Let ρ(κ) denote the survival probability of Xκ , i.e., the probability that all generations
are non-empty. It is easily seen that this is the same as the probability that the total number
|Xκ | of particles in Xκ is infinite. For basic results about ρ(κ), we refer the reader to [6].

Finally, as in [6], a kernel κ is reducible if there exists A ⊂ S with 0 < μ(A) < 1 such
that κ is zero almost everywhere on A × (S \ A). Otherwise, κ is irreducible.

Throughout, we use standard graph theoretic notation as in [3]; for example, E(G) and
V (G) denote the edge-set and vertex-set of a graph G, and e(G) and |G| the numbers of
edges and vertices. We use standard notation for probabilistic asymptotics as in [19]. For

example,
p→ denotes convergence in probability, and Xn = op(f (n)) means Xn/f (n)

p→ 0,
i.e., for every ε > 0, P(|Xn| ≥ εf (n)) → 0 as n → ∞.

1.1 Main Results

In this subsection we state our main results; we shall give corresponding results for hyper-
graphs in Sect. 3. Recall that any matrix denoted by An is assumed to be a symmetric n-by-n
matrix with non-negative entries. Given a graph G and an integer i ≥ 1, we write Ci(G) for
the number of vertices in the ith largest component of G, with Ci(G) = 0 if G has fewer
then i components. We shall see later that our results imply corresponding results for the
Poisson variants of G(An); for simplicity we state them only in the original formulation,
where the edge probabilities are min{aij /n,1}. The theorems are valid for a kernel κ on any
probability space (S,μ), but as noted above we may assume without loss of generality that
S = [0,1], and we shall do so in the proofs for convenience.
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Theorem 1.1 Let κ be a kernel and (An) a sequence of symmetric non-negative n-by-n
matrices such that δ�(An, κ) → 0. Then C1(G(An))/n ≤ ρ(κ) + op(1). If κ is irreducible,

then C1(G(An))/n
p→ ρ(κ) and C2(G(An)) = op(n).

Of course, as usual we do not require An to be defined for every n, only for a subsequence.
Let ρκ(x) denote the survival probability of the process Xκ (x) started with a particle of

type x. Let Tκ be the integral operator on S with kernel κ , defined by

(Tκf )(x) =
∫

S
κ(x, y)f (y) dμ(y), (6)

for any (measurable) function f such that this integral is defined (finite or +∞) for a.e. x.
Note that this class of functions includes every (measurable) function f ≥ 0. Also, let

‖Tκ‖ = sup
{‖Tκf ‖2 : ‖f ‖2 ≤ 1, f ≥ 0

} ≤ ∞;
clearly if ‖Tκ‖ < ∞, then ‖Tκ‖ is simply the norm of Tκ as an operator on L2(S,μ).

Recall from [6, Theorem 6.2] that ρ(κ) > 0 if and only if ‖Tκ‖ > 1, and that if ‖Tκ‖ > 1
and κ is irreducible, then ρκ is the unique non-zero solution f ≥ 0 to the functional equation

f = 1 − exp(−Tκf ).

Using Theorem 1.1, we shall deduce the following slight extension, describing the ‘crit-
ical’ value of c above which a giant component appears in G(cAn).

Theorem 1.2 Let κ be a kernel, (An) a sequence of symmetric non-negative n-by-n matrices
such that δ�(An, κ) → 0, and c > 0 a constant, and set Gn = G(cAn).

(a) If c ≤ ‖Tκ‖−1, then C1(Gn) = op(n).
(b) If c > ‖Tκ‖−1, then C1(Gn) = �(n) whp. Furthermore, if κ is bounded, then for any

constant α < (c‖Tκ‖ − 1)/(c supκ) we have C1(Gn) ≥ αn whp.

(c) If κ is irreducible, then C1(Gn)/n
p→ ρ(cκ) and C2(Gn) = op(n).

This clearly generalizes the main result, Theorem 1, of Bollobás, Borgs, Chayes and
Riordan [7], which is simply the special case in which κ and the entries of the matrices An

are uniformly bounded. As we shall see in the next subsection, Theorem 1.2 also generalizes
Theorem 3.1 of [6]. Note, however, that to prove this requires various results from [6].

Returning to the irreducible case, we shall also prove a ‘stability’ result analogous to
Theorem 3.9 of [6].

Theorem 1.3 Let κ be an irreducible kernel and (An) a sequence of non-negative symmetric
n-by-n matrices such that δ�(An, κ) → 0. For every ε > 0 there is a δ = δ(κ, ε) > 0 such
that, whp,

ρ(κ) − ε ≤ C1(G
′
n)/n ≤ ρ(κ) + ε

for every graph G′
n that may be obtained from Gn = G(An) by deleting at most δn vertices

and their incident edges, and then adding or deleting at most δn edges.

As we shall show in Sect. 2.6, using this result it is not hard to deduce exponential tail
bounds on the size of the giant component.
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Theorem 1.4 Let κ be an irreducible kernel and ε > 0 a real number. There is a γ =
γ (κ, ε) > 0 such that whenever (An) is sequence of non-negative symmetric n-by-n matrices
with δ�(An, κ) → 0, then setting Gn = G(An) we have

P
(|C1(Gn) − ρ(κ)n| ≥ εn

) ≤ e−γ n

and

P
(
C2(Gn) ≥ εn

) ≤ e−γ n

for all large enough n.

For the very special case of G(n,p), p = c/n, much stronger results are known, estab-
lishing the correct dependence of γ on ε in the upper and lower bounds. Indeed, such a
‘large deviation principle’ for C1(G(n, c/n)) was obtained by O’Connell [24], and Biskup,
Chayes and Smith [2] proved a corresponding result for the number of vertices in ‘large’
components. One might ask whether these results can be generalized to G(An); this is likely
to be rather hard. Indeed, it is not even clear whether they extend to G(An) with An con-
verging to a constant kernel κ .

Remark 1.5 We have stated all our results for a deterministic sequence An with
δ�(An, κ) → 0. In applications, however, the matrices An are often random, and Gn is de-
fined by first conditioning on An, and then taking the entries as giving the conditional proba-
bilities of the edges, which are conditionally independent. The conclusions of Theorems 1.1–
1.3 are all of the form that G(An) has certain properties whp. Having proved such a result

assuming δ�(An, κ) → 0, the corresponding result with An random and δ�(An, κ)
p→ 0

follows immediately. One way of seeing this is to note that a sequence En of events holds

whp if and only if every subsequence has a subsubsequence holding whp. If δ�(An, κ)
p→ 0,

then given a subsequence (with deterministic indices) of the random sequence (An), one can
find a subsubsequence such that δ�(An, κ) → 0 holds a.s. Then one can condition on the
matrices in this subsubsequence, and apply the result for the deterministic case.

The rest of the paper is organized as follows. In the next few subsections we discuss var-
ious applications and consequences of the results above. In Sect. 2 we prove Theorems 1.1–
1.4: as the proofs are somewhat lengthy we shall break this section into subsections. Finally,
in Sect. 3 we present extensions of our main results to the hyperkernels and corresponding
random (hyper)graphs considered in [8].

1.2 Relationship to the Sparse Inhomogeneous Model

In this subsection we shall prove a simple lemma which, together with Theorem 1.2, implies
Theorem 3.1 of [6]. This latter result states that (essentially) the conclusions of Theorems 1.1
and 1.2 (with c = 1) hold when the random graph Gn is an instance of the general sparse
inhomogeneous model GV (n, κn) of [6]. Since the full definitions of [6] are rather cumber-
some, for this subsection only we assume a certain familiarity with the terminology of [6].

We say that a kernel κ on (S,μ) is of finite type if there is a finite partition (S1, . . . , Sr ) of
S into measurable sets such that κ is constant on each of the sets Si × Sj . A key strategy we
used in [6] was to reduce results about the general case to the finite-type case; we shall use
the same approach in this subsection. In the rest of this paper we follow a different strategy,
using cut convergence to directly prove results about the general case.
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The sparse inhomogeneous model GV (n, κn) is defined in terms of a ground space
V = (S,μ, (xn)), and a sequence (κn) of kernels on (S,μ). Here (S,μ) is a probability
space (satisfying some additional assumptions) and each xn is a (deterministic or) random
sequence of n points of S , satisfying certain technical assumptions. The sequence (κn) is
assumed to converge to a kernel κ in a certain sense, and must also satisfy a certain ‘graph-
icality’ assumption that involves the sequences xn. For the full technical details, which will
not be relevant here, see [6].

As noted in [6, Remark 8.8], in proving results about this model one may always assume
that the vertex types are deterministic. In this case GV (n, κn) has the distribution of G(An),
where An is the matrix obtained by sampling the kernel according to the vertex types: An

has entries aij = a
(n)
ij given by aij = κn(x

(n)
i , x

(n)
j ) ∧ n for i = j and aii = 0, where x ∧ y =

min{x, y}. We refer the reader to [6] for the formal definition of GV (n, κn), and in particular
for the precise definitions of a (generalized) vertex space and a graphical (sequence of)
kernel(s).

The next lemma shows that the matrices An associated to GV (n, κn) do converge in
probability to the limit kernel κ in the cut metric. Although our main interest is in the cut
distance, we in fact obtain a result for the L1 norm, modulo rearrangements. Given two
kernels κ , κ ′ on the standard ground space, let

δ1(κ, κ ′) = inf
κ ′′∼κ ′ ‖κ − κ ′′‖L1 , (7)

in analogy with (5). More generally, for two kernels on arbitrary (not necessarily equal)
probability spaces, we may define δ1(κ, κ ′) as a certain infimum over couplings of these
probability spaces; we omit the details. Using the fact that finite-type kernels are dense in
L1([0,1]2), it is easy to check that the coupling definition and (7) coincide when the ground
space is the standard one; the argument is as in [4, Sect. 2.4].

Lemma 1.6 Let V = (S,μ, (xn)) be a vertex space, and let (κn) be a sequence of kernels
that is graphical on V with limit κ . Let An be the matrix with entries aij = κn(x

(n)
i , x

(n)
j ) ∧ n

for i = j and aii = 0. Then δ1(κAn, κ)
p→ 0 and δ�(An, κ) = δ�(κAn, κ)

p→ 0.

Proof Since ‖κ ′‖� ≤ ‖κ ′‖L1 for any κ ′, we have δ�(κ1, κ2) ≤ δ1(κ1, κ2) for any two kernels,
so it suffices to prove the first statement.

Conditioning on the vertex types, we may and shall assume that the vertex types are
deterministic. For convenience we assume that S is the standard ground space [0,1]. (The
general case requires couplings of κ and An, but is otherwise the same.)

Suppose first that κ is regular finitary; roughly speaking, this means that κ is of finite
type. (More precisely, κ must be of finite type and must satisfy an additional technical con-
dition; see [6].) Suppose also that κn = κ for every n. In this case the result is essentially
trivial: we may assume that there is a partition of S into sets S1, . . . , Sk such that κ is con-
stant on each set Sr × Ss . The definition of a vertex space ensures that for each r there are
μ(Sr)n+ o(n) vertices i such that xi ∈ Sr . Rearranging (or coupling) appropriately, we may
assume that each Sr is an interval Ir ⊆ S = [0,1]. We may then order the vertices so that for
all but o(n) vertices i the interval (i − 1/n, i/n] lies entirely inside the interval Ir contain-
ing xi . After doing so, κ and κAn differ on a set of measure o(1). Since both are bounded by
supκ < ∞, it follows that κAn → κ in L1 and hence in δ�.

To treat the general case, we approximate by finite-type kernels, as so often in [6]. Indeed,
by Lemma 7.3 of [6] there is a sequence of regular finitary kernels κ−

m such that κ−
m ≤ κn

for all n ≥ m and κ−
m(x, y) ↗ κ(x, y) for a.e. (x, y) ∈ S 2. By monotone convergence, we
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have
∫

κ−
m → ∫

κ as m → ∞. Fix ε > 0. Then there is some m such that κ− = κ−
m satisfies

κ− ≤ κ and
∫
(κ − κ−) ≤ ε.

Let A−
n be the matrix with entries a−

ij = κ−(x
(n)
i , x

(n)
j )∧n, i = j , and a−

ii = 0. Considering
from now on only n ≥ m, we then have a−

ij ≤ aij and thus κA−
n

≤ κAn pointwise. After
conditioning on the vertex types, the expected number of edges in GV (n, κn) is exactly

1

2

∑

i

∑

j =i

aij

n
= 1

2

∑

i

∑

j

aij

n
= n

2

∫

κAn,

using aii = 0 for the first equality. Thus, by Lemma 8.7 of [6],
∫

κAn → ∫
κ . Similarly (since

a finite-type kernel is always graphical),
∫

κA−
n

→ ∫
κ−. Hence,

‖κAn − κA−
n
‖L1 =

∫

(κAn − κA−
n
) →

∫

(κ − κ−) ≤ ε.

By the finite-type case above, we have δ1(κA−
n
, κ−) → 0. Since ‖κ − κ−‖L1 ≤ ε it follows

that lim sup δ1(κAn, κ) ≤ 2ε. Recalling that ε > 0 was arbitrary, the result follows. �

Recall that Theorem 3.1 of [6] states (essentially) that the random graphs Gn =
GV (n, κn) satisfy the conclusions of Theorems 1.1 and 1.2. Using Lemma 1.6, by Re-
mark 1.5 the vertex space case of this result follows immediately from Theorems 1.1 and 1.2.
As noted in [6, Sect. 8.1], the apparent extra generality of generalized vertex spaces makes
no essential difference, so Theorem 3.1 of [6] then follows. In other words, we have shown
that Theorem 3.1 of [6] may be deduced from our present Theorems 1.1 and 1.2, using
various results from [6] mentioned above. Let us remark that in practice, the conditions of
Theorem 3.1 of [6] will often be easier to verify than those of Theorems 1.1 and 1.2.

1.3 Further Applications

As noted in [8], the definitions in [6] exclude one simple case to which the results clearly
extend, namely the case of an arbitrary integrable kernel κ , and i.i.d. vertex types: given a
kernel κ , one may define the random graph G(n,κ) = G1/n(n, κ) on [n] by taking x1, . . . , xn

to be independent and uniformly distributed on [0,1], and given these ‘vertex types’, joining
each pair {i, j} of vertices with probability min{κ(xi, xj )/n,1}, independently of all other
pairs. With κ bounded, a corresponding dense random graph was studied by Lovász and
Szegedy [20].

Our next lemma shows that Theorems 1.1–1.3 apply (unsurprisingly) to the graphs
G(n,κ), since the (random) matrices of edge probabilities associated to G(n,κ) converge
to κ in probability in δ�.

Lemma 1.7 Let κ be a kernel. For n ≥ 1 let x1, . . . , xn be i.i.d. uniform points from S ,
and let An be the n-by-n matrix with entries aij = κ(xi, xj ) for i = j , and aii = 0. Then

δ1(An, κ)
p→ 0 and δ�(An, κ)

p→ 0.

Proof As before, we have δ� ≤ δ1, so it suffices to prove the first statement. Fix ε > 0.
By standard results there is a finite-type kernel κ ′ such that ‖κ − κ ′‖L1 ≤ ε2. Indeed, this
follows by the construction of the product measure, since the rectangular sets A × B gen-
erate an algebra F0 that generates the product σ -field, and it is easily seen that finite linear
combinations of indicator functions of sets in F0 are dense in L1(S 2).
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Let A′
n be the matrix with entries a′

ij = κ ′(xi, xj ), i = j , and a′
ii = 0. Then

E‖κAn − κA′
n
‖L1 = n(n − 1)

n2
‖κ − κ ′‖L1 ≤ ε2,

so with probability at least 1 − ε we have

δ1(An,A
′
n) = δ1(κAn, κA′

n
) ≤ ‖κAn − κA′

n
‖L1 ≤ ε. (8)

Since κ ′ is of finite type, it is essentially trivial that δ1(A
′
n, κ

′)
p→ 0 as n → ∞; the argu-

ment is similar to one in the previous subsection, so we omit the details. Since δ1(κ, κ ′) ≤
‖κ − κ ′‖L1 ≤ ε2,

δ1(An, κ) ≤ δ1(An,A
′
n) + δ1(A

′
n, κ

′) + δ1(κ
′, κ),

and ε > 0 was arbitrary, it follows that δ1(An, κ)
p→ 0, as claimed. �

So far we have shown that the results in Sect. 1.1 imply many existing results about the
giant component in various sparse random graphs. We now turn to a new application, giving
an example that we believe is not covered by known results.

Let p = p(n) be some normalizing function, with 0 < p ≤ 1 and p(n) → 0. Let Gn be
a sequence of graphs in which Gn has n vertices and �(pn2) edges, and let κ be a kernel.
Following the terminology of [4, 5], we say that δ�(Gn, κ) → 0 if δ�(An, κ) → 0, where An

is 1/p times the adjacency matrix of Gn. A sequence (Gn) satisfying this condition may be
thought of as a sequence of inhomogeneous sparse quasi-random graphs. For graphs which
are dense and homogeneous, there are many equivalent definitions of quasi-randomness,
or pseudo-randomness; see Thomason [26, 27] or Chung, Graham and Wilson [13], for
example. In the sparse case these notions are no longer equivalent, as discussed by Chung
and Graham [12] in the homogeneous case, and Bollobás and Riordan [4] in general; when
κ is constant, normalizing so that κ = 1, we have δ�(Gn, κ) → 0 if and only if

sup
V ⊂V (Gn)

∣
∣e(Gn[V ]) − p|V |2/2

∣
∣ = o(pn2); (9)

this condition is called DISC in [12]. Other, stronger conditions have also been considered,
in particular by Thomason [26, 27]. Our next result establishes the threshold for percolation
on an arbitrary sequence of inhomogeneous sparse quasi-random graphs.

Theorem 1.8 Let c > 0 be a constant, let p = p(n) be any function with c/n ≤ p(n) ≤ 1,
let κ be an irreducible kernel on [0,1]2, and let (Gn) be a sequence of graphs with |Gn| = n

and δ�(Gn, κ) → 0. Writing G′
n for the random subgraph of Gn obtained by selecting each

edge independently with probability c/(pn), we have C1(G
′
n)/n

p→ ρ(cκ). In particular, the
threshold value of c above which a giant component appears in G′

n is given by 1/‖Tκ‖.

Proof As above, let An be 1/p times the adjacency matrix of Gn. Then, by assumption,
δ�(An, κ) → 0, so δ�(cAn, cκ) → 0. The random subgraph G′

n is exactly G(cAn), so the
result follows from Theorem 1.1. �

As noted in [4], one way to construct inhomogeneous sparse quasi-random graphs is to
consider appropriate random graphs, but this is not so interesting in the present context: the
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random subgraphs of such graphs end up being the graphs G(n,κ) considered at the start
of the subsection. A more interesting application of Theorem 1.8 is to deterministic quasi-
random graphs. In the homogeneous case, where κ = 1 is constant, many such sequences are
known. One example is given by the ‘polarity graphs’ of Erdős and Rényi [15], defined (for
suitable n) by taking as vertices the points of the projective plane over GF(q), q a prime
power, and joining x = (x0, x1, x2) and y = (y0, y1, y2) if and only if x0y0 +x1y1 +x2y2 = 0
in GF(q). Here n = q2 +q +1 and p = (q +1)/n = �(n−1/2). Other examples are the coset
graphs of Chung [11] and the Ramanujan graphs of Lubotzky, Phillips and Sarnak [21]. In
all these examples the limiting kernel is constant, so Theorem 1.8 says that on any of these
graphs, the threshold for percolation is when the average degree of the random subgraph is
equal to 1.

Note that in the examples above, the matrices (An) to which Theorem 1.1 or Theorem 1.2
is applied are very far from satisfying the uniform boundedness condition assumed in Bol-
lobás, Borgs, Chayes and Riordan [7]. Indeed, each An has all entries either 0 or 1/p, where
p = p(n) → 0. This also implies that the corresponding kernels κAn , which do converge to
κ = 1 in the cut norm, do not converge in various natural stronger senses, such as pointwise
or in L1.

In general, it is very hard to compute the cut distance between two kernels. Indeed, if A1

and A2 are the adjacency matrices of two graphs, then the general problem of computing
δ�(κA1 , κA2) includes as a special case deciding whether G1 and G2 are isomorphic. Thus
applications of Theorems 1.1 and 1.2 are likely to involve special cases where cut conver-
gence is guaranteed for some simple reason, such as the example in the previous subsection.

1.4 Consequences for Branching Processes

Theorem 1.1 has an interesting consequence purely concerning branching processes. Recall
that if κ is a kernel, then ρ(κ) denotes the survival probability of the multi-type Poisson
Galton–Watson process Xκ .

Theorem 1.9 Let κm, m ≥ 1, and κ be kernels with δ�(κm, κ) → 0 as m → ∞. Then
ρ(κm) → ρ(κ).

Proof Let us first note that the result is not really a statement about the cut metric δ�, but
rather about the cut norm ‖ · ‖�. Indeed, by definition of δ� there are rearrangements κ ′

m

of κm with ‖κ ′
m − κ‖� ≤ δ�(κm, κ) + 1/m, say, and hence ‖κ ′

m − κ‖� → 0. Since ρ(κ ′
m) =

ρ(κm), in proving the result we may assume if we like that ‖κm − κ‖� → 0.
We shall prove the result in three steps.
Step 1: suppose that all κm are irreducible; this case is the heart of the proof. For each

m we may find a sequence A(m)
n of symmetric n-by-n matrices with δ�(A(m)

n , κm) → 0 as
n → ∞. Indeed, this is an immediate consequence of Lemma 1.7. By Theorem 1.1, if n is
large enough, then

P
(∣
∣C1(G(A(m)

n ))/n − ρ(κm)
∣
∣ ≥ 1/m

) ≤ 1/m2, (10)

say. Pick n(m) such that (10) holds and δ�(A
(m)

n(m), κm) ≤ 1/m, and let Am = A
(m)

n(m). By (10),
with probability 1 we have

∣
∣
∣
∣
C1(G(Am))

|G(Am)| − ρ(κm)

∣
∣
∣
∣ → 0. (11)
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Now δ�(Am,κm) ≤ 1/m by our choice of n(m), while δ�(κm, κ) → 0, so δ�(Am,κ) → 0.
Applying Theorem 1.1 again, we have C1(G(Am))/|G(Am)| ≤ ρ(κ) + op(1). Together with
(11) this implies that

lim supρ(κm) ≤ ρ(κ). (12)

If κ is irreducible, then we have C1(G(Am))/|G(Am)| p→ ρ(κ), so ρ(κm) → ρ(κ), as re-
quired. We shall return to the lower bound in the case that κ is reducible later.

Step 2: we now consider the general case, where some of κ and the κm may be reducible.
By Theorem 6.4(i) of [6], given a kernel κ ′ and a sequence κ ′

n tending pointwise down to κ ′,
we have ρ(κ ′

n) → ρ(κ ′). Applying this with κ ′ = κm and κ ′
n = κm + 1/n, say, we see that for

each m there is an εm < 1/m such that |ρ(κ ′
m) − ρ(κm)| ≤ 1/m, where κ ′

m = κm + εm. Now
κ ′

m is irreducible, and ‖κ ′
m − κm‖� ≤ 1/m → 0, so δ�(κ ′

m, κ) → 0, and the results of Step 1
apply. In particular, the upper bound (12) holds, and if κ is irreducible, then ρ(κm) → ρ(κ),
as required.

Step 3: in the case where κ is reducible, it remains to prove the lower bound corre-
sponding to (12). For this we decompose κ into irreducible kernels as in [6]. As shown
there (in Lemma 5.17), given any κ there is a finite or countable partition (Si)

N
i=0, N ≤ ∞,

of S into measurable sets such that κ = ∑
i≥1 κ(i) holds a.e., where each κ(i) is zero off

Si × Si and irreducible when restricted to Si × Si . Fix ε > 0. Since ρ(κ) = ∑
ρ(κ(i)),

there is some k < ∞ such that
∑k

i=1 ρ(κ(i)) ≥ ρ(κ) − ε. Define κ(i)
m to be the kernel that

is equal to κm on Si × Si and zero off this set, and let κ ′
m = ∑k

i=1 κ(i)
m . Then κm ≥ κ ′

m,
so ρ(κm) ≥ ρ(κ ′

m) = ∑k

i=1 ρ(κ(i)
m ). Since ‖κm − κ‖� ≥ ‖κ(i)

m − κ(i)‖� for each i, we have
‖κ(i)

m − κ(i)‖� → 0 for each i. Since κ(i) is irreducible, by the result of Step 2 we have
ρ(κ(i)

m ) → ρ(κ(i)). Summing over i from 1 to k it follows that

lim inf
m→∞ ρ(κm) ≥

k∑

i=1

ρ(κ(i)) ≥ ρ(κ) − ε.

Since ε > 0 was arbitrary we thus have lim infm→∞ ρ(κm) ≥ ρ(κ). Together with (12), this
completes the proof. �

Note that Theorem 1.9 is a purely analytic statement about branching processes and the
cut metric (or cut norm—rearrangements change nothing here). However, the only proof
we know is that above, which goes via graphs! Corresponding results with much stronger
assumptions (monotone convergence, either upwards or downwards) were proved in [6];
these weaker results were all that was needed there.

We close this section by giving a direct proof of a weaker form of Theorem 1.9, assuming
L1 convergence. As above, rearrangement is irrelevant, so it makes no difference whether
we suppose that δ1(κn, κ) → 0 or that ‖κn − κ‖L1 → 0.

Theorem 1.10 Let κn, n ≥ 1, and κ be kernels on a probability space (S,μ), with ‖κn −
κ‖L1 → 0 as n → ∞. Then ρ(κn) → ρ(κ).

The proof will be based on weak-∗ convergence. Let fn, n ≥ 1, and f be functions in
L∞(S,μ). The definition of the weak-∗ topology on L∞(S,μ) is that fn

w∗−→ f if and only
if

∫

g(x)fn(x) dμ(x) →
∫

g(x)f (x) dμ(x) for every g ∈ L1(S,μ). (13)
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Lemma 1.11 Suppose that κ ∈ L1(S × S) and fn ∈ L∞(S,μ) with fn

w∗−→ 0. Let hn =
Tκfn, so hn(x) = ∫

κ(x, y)fn(y) dμ(y). Then hn → 0 in L1(S,μ).

Proof Note first that by the uniform boundedness principle we have C = sup‖fn‖∞ < ∞.
(In fact, in the application, each fn is bounded by 1.)

Let ε > 0. As in the proof of Lemma 1.7, there is a finite-type kernel κ ′ such that ‖κ −
κ ′‖L1 < ε. We may express κ ′ as κ ′(x, y) = ∑N

i=1 ϕi(x)ψi(y) for ϕi , ψi ∈ L1. (In fact, we
may take each ϕi or ψi to be a constant times a characteristic function.) Now

‖hn‖L1 =
∥
∥
∥

∫

κ(x, y)fn(y) dμ(y)

∥
∥
∥

L1

≤
∫

|(κ(x, y) − κ ′(x, y))fn(y)|dμ(x)dμ(y)

+
N∑

i=1

∥
∥
∥

∫

ϕi(x)ψi(y)fn(y) dμ(y)

∥
∥
∥

L1
.

The first term above is at most ‖κ − κ ′‖L1‖fn‖∞ ≤ εC. The second term is exactly

N∑

i=1

‖ϕi‖L1

∣
∣
∣
∣

∫

ψi(y)fn(y) dμ(y)

∣
∣
∣
∣.

Each integral tends to zero by the definition (13) of the weak-∗ topology, so it follows that
lim sup‖hn‖L1 ≤ εC. Since ε > 0 was arbitrary, the result follows. �

With this preparation behind us, we turn to the proof of Theorem 1.10.

Proof of Theorem 1.10 We may assume without loss of generality that the σ -field F on S
where μ is defined is countably generated, and thus L1(S,μ) is separable. One way to see
this is to note that otherwise we can replace F by a countably generated sub-σ -field F0 such
that each κn is F0 × F0-measurable; alternatively, by the results of [17] we may assume
without loss of generality that S = [0,1], with μ Lebesgue measure.

Suppose for simplicity that κ is irreducible; arguing as in the proof of Theorem 1.9, it is
not hard to reduce the general case to this case.

Suppose for a contradiction that ‖κn − κ‖L1 → 0 but ρ(κn) → ρ(κ). Passing to a sub-
sequence, we may assume that |ρ(κn) − ρ(κ)| is bounded away from zero. To obtain a
contradiction it then suffices to show that for some subsequence (κni

) of (κn) we have
ρ(κni

) → ρ(κ).
Let ρn(x) = ρκn(x) be the survival probability of the branching process Xκn(x), started

with a single particle of type x. As shown in [6], the function ρn satisfies

ρn = 1 − exp(−Tκnρn). (14)

It is well known that the unit ball of L∞(S,μ) is sequentially compact in the weak-∗ topol-
ogy when L1(S,μ) is separable. (The unit ball of L∞ is always compact, but not necessarily
sequentially compact otherwise.) For the special case S = [0,1], let (fn) be a sequence in
the unit ball of L∞([0,1]). This sequence has a subsequence (fnk

) such that
∫

I
fnk

con-
verges for each of the countably many intervals I with rational endpoints. Since the fnk

are
uniformly bounded, this is enough to ensure weak-∗ convergence.
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Since ‖ρn‖∞ ≤ 1 for every n, by sequential compactness there is some ρ∗ ∈ L∞(S,μ)

and some subsequence of (κn) along which ρn

w∗−→ ρ∗. From now on we restrict our attention
to such a subsequence.

Now

‖Tκnρn − Tκρn‖L1 ≤ ‖κn − κ‖L1‖ρn‖∞ ≤ ‖κn − κ‖L1 → 0.

Also, by Lemma 1.11, ‖Tκρn − Tκρ
∗‖L1 → 0. Hence Tκnρn → Tκρ

∗ in L1. Passing to a
subsequence, we may assume that Tκnρn → Tκρ

∗ a.e. But then, using (14),

ρn = 1 − e−Tκn ρn → 1 − e−Tκρ∗
a.e.

From (13) and dominated convergence, it follows that

ρn

w∗−→ 1 − e−Tκρ∗
.

Since ρn

w∗−→ ρ∗, it follows that ρ∗ = 1 − e−Tκρ∗
a.e.

Let ρ(x) denote the survival probability of Xκ (x). Since κ is irreducible, by [6, Theo-
rem 6.2], either ρ∗ = ρ a.e. or ρ∗ = 0 a.e. In the first case,

ρ(κn) =
∫

ρn(x) dμ(x) →
∫

ρ∗(x) dμ(x) = ρ(κ),

as desired. In the second case, we have ρ(κn) → 0 similarly.
All that remains is to rule out the possibility that ρ(κn) → 0 < ρ(κ). This is not hard

using the results in [6]. For M > 0, let κM denote the pointwise minimum of κ and M , and
define κM

n similarly. Suppose that ρ(κ) > 0. Then ‖Tκ‖ > 1. As shown in the proof of [6,
Lemma 5.16], we have ‖TκM ‖ ↗ ‖Tκ‖ as M → ∞, so there is some M with c = ‖TκM ‖ > 1.
Fix such an M . Since

‖κM
n − κM‖L1 ≤ ‖κn − κ‖L1 → 0, (15)

and the kernels κM
n and κM are uniformly bounded, we have ‖TκM

n
‖ → ‖TκM ‖ = c > 1. In

particular, for all large enough n we have ‖TκM
n

‖ > (c + 1)/2 > 1. Finally, it follows from
[6, Remark 5.14] that we have

ρ(κM
n ) ≥ ‖TκM

n
‖ − 1

supκM
n

≥ (c − 1)/2

M
> 0.

Since ρ(κn) ≥ ρ(κM
n ) it follows that ρ(κn) → 0, and the proof is complete. �

If we assume cut convergence instead of L1 convergence, then using the fact that
∥
∥
∥
∥

∫

κ(x, y)f (y) dμ(y)

∥
∥
∥
∥

L1
≤ ‖κ‖�‖f ‖∞

in place of the corresponding observation for the L1 norm, the first part of the proof above
goes through unchanged, showing that ρ∗ → ρ a.e. or ρ∗ → 0. Unfortunately, we do not
know how to exclude the possibility that ρ(κn) → 0 < ρ(κ), except by appealing to Theo-
rem 1.1, i.e., working with graphs. The problem is that the relation equivalent to (15) for the
cut norm rather than the L1 norm does not hold in general. Of course, given that Theorem 1.9
is true, it is almost guaranteed that it has a direct analytic proof.
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As discussed in [4, Sect. 2], until recently there was another example of an analytic fact
about kernels whose only known proof involved graphs (and the cut metric), namely that
two bounded kernels may be coupled to agree a.e. if and only if their ‘graphical moments’
(or subgraph counts) are equal. This follows from the results of Borgs, Chayes, Lovász, Sós
and Vesztergombi [9] concerning metrics for graphs (see [4]). However, by now there are
analytic proofs: Janson and Diaconis [14] showed that it also follows from results of Hoover
and Kallenberg on exchangeable arrays. A direct (and far from simple) proof has recently
been given by Borgs, Chayes and Lovász [10].

2 Proofs of Theorems 1.1–1.4

In this section we shall prove our main results; the strategy of the proof of Theorem 1.1 is as
follows. First, in Sect. 2.1, we shall show that if each κn is an n-by-n kernel and δ�(κn, κ) →
0, then almost all of the weight of κn comes from values that are o(n). This will allow us
to assume that all edge probabilities in G(An) are o(1). It then follows that the expected
number of small tree components in G(An) is close to what it ‘should be’, i.e., n times a
certain function of the kernel κAn . In Sect. 2.2 we show that this function is continuous with
respect to the cut metric. This then tells us that we have almost the ‘right’ number of vertices
in small components; the details are given in Sect. 2.3. Finally, in Sect. 2.4 we complete
the proof of Theorem 1.1 by showing that in the irreducible case, almost all vertices in
large components are in a single component, using a method from Bollobás, Borgs, Chayes
and Riordan [7]. In Sect. 2.5 we treat the reducible case, proving Theorem 1.2. Finally, in
Sect. 2.6 we prove our stability and concentration results, Theorems 1.3 and 1.4.

For convenience, in this section we assume, as we may, that all kernels are on [0,1],
unless explicitly stated otherwise.

2.1 Eliminating Large Edge Weights

In Theorem 2.1 of [5] it was shown that if (Gn) is a sequence of graphs in which Gn has n

vertices and O(n) edges, An is the adjacency matrix of Gn, κ is a kernel and δ�(nAn, κ) →
0, then κ = 0 a.e. and e(Gn) = o(n). A simple modification of the proof gives the following
lemma. Recall that a matrix denoted An is assumed to be n-by-n.

Lemma 2.1 Suppose that κ is a kernel and (An) a sequence of symmetric non-negative
matrices such that δ�(An, κ) → 0. Then there is some function M(n) with M(n) = o(n)

such that only o(n) entries of An exceed M(n), and the sum of these entries is o(n2).

A consequence of this is that if A′
n is obtained from An by taking the pointwise minimum

with M(n), then δ�(A′
n, κ) → 0.

Proof Although the details are almost exactly the same as in [5], we spell them out. We
write κn for κAn .

Since δ�(κn, κ) → 0, we may choose rearrangements κ(τn) of κ such that

‖κn − κ(τn)‖� → 0. (16)

It suffices to show that for any c > 0, the sum of the entries of An exceeding cn is at most
c2n2 for n large enough. This implies that there are at most cn such entries, and the result
then follows by letting c tend to 0.
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Suppose for a contradiction that there is some c > 0 such that, for infinitely many n, the
sum of the entries of An exceeding cn is at least c2n2; from now on we fix such a c and
restrict our attention to the corresponding values of n. Let Gn be the graph whose edges
correspond to those entries of An which exceed cn. Let Mn be a largest matching in Gn.

Suppose first that |V (Mn)|/n → 0. Let Sn be the subset of [0,1] corresponding to the
vertex set of Mn, so μ(Sn) = |V (Mn)|/n → 0. Every edge of weight at least cn meets a
vertex of Mn, so

∫

Sn×[0,1]
κn = 1

n2

∑

v∈V (Mn)

∑

w

avw ≥ 1

2n2
(cn)2 = c2/2,

where the factor 2 accounts for the double counting of edges within V (Mn).
From (16), writing S ′

n for τn(Sn), we have

∫

S′
n×[0,1]

κ =
∫

Sn×[0,1]
κ(τn) ≥

∫

Sn×[0,1]
κn − o(1) ≥ c2/2 − o(1),

so
∫

S′
n×[0,1] κ → 0. Since μ(S ′

n × [0,1]) = μ(S ′
n) = μ(Sn) → 0, this contradicts integrability

of κ .
Passing to a subsequence, we may thus assume that for some a > 0, every maximal

matching Mn meets at least an vertices.
Since κ is integrable, we have

∫
κ1{κ>C} → 0 as C → ∞, where 1{κ>C} : [0,1]2 →

{0,1} is the indicator of the event that κ(x, y) > C. In particular, there is a C < ∞
with

∫
κ1{κ>C} ≤ ac/4. Fix an n with n > 4C/(ac), noting that if S ⊂ [0,1]2 satisfies

μ(S) ≤ 1/n, then
∫

S

κ ≤ Cμ(S) +
∫

κ1{κ>C} ≤ C/n + ac/4 ≤ ac/2. (17)

Choosing n large enough, we may assume from (16) that there is a κ ′ = κ(τn) ∼ κ with

‖κn − κ ′‖� ≤ ac/25. (18)

Given subsets U and V of [n], let

An(U,V ) =
∑

u∈U

∑

v∈V

auv.

Let Mn = {u1v1, . . . , urvr} be a matching in Gn with r ≥ an, and set U = {ui} and
V = {vi}. Identifying subsets of [n] with the corresponding unions of intervals of length
1/n, from (18) we have

∣
∣
∣
∣

∫

U×V

κ ′ − An(U,V )

n2

∣
∣
∣
∣ ≤ ac/25.

Let U ′ be a random subset of U obtained by selecting each vertex independently with prob-
ability 1/2, and let V ′ be the complementary subset of V , defined by V ′ = {vi : ui /∈ Ui}.
The edges of our matching Mn never appear as edges from U ′ to V ′. On the other hand, any
other edge uivj , i = j , from U to V has probability 1/4 of appearing. Hence,

E
(
An(U

′,V ′)
) = An(U,V )

4
− 1

4

∑

i

Auivi
.
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Similarly, writing S ⊂ [0,1]2 for the union of the r 1/n-by-1/n squares corresponding to
the edges uivi , we have

E

(∫

U ′×V ′
κ ′

)

= 1

4

∫

U×V

κ ′ − 1

4

∫

S

κ ′.

Combining the last three displayed equations using the triangle inequality, and noting that
μ(S) = r/n2 ≤ 1/n, it follows that

∣
∣
∣
∣E

(∫

U ′×V ′
κ ′

)

− 1

n2
E
(
An(U

′,V ′)
)
∣
∣
∣
∣ ≥ 1

4n2

∑

i

Auivi
− 1

4

∫

S

κ ′ − ac/100

≥ (an)(cn)

4n2
− ac/8 − ac/100 > ac/16,

using (17). On the other hand, from (18),

∣
∣
∣
∣

∫

U ′×V ′
κ ′ − An(U

′,V ′)
n2

∣
∣
∣
∣ ≤ ac/25

always holds, which implies a corresponding upper bound on the difference of the expecta-
tions. Since ac/25 < ac/16, we obtain a contradiction, completing the proof. �

2.2 Tree Integrals and the Cut Metric

In this subsection we shall show that a certain function of a kernel whose role will become
clear later is continuous (in fact Lipschitz) with respect to the cut metric. Here there is
no particular reason to consider only the standard ground space; instead we consider an
arbitrary probability space.

Let (S, F ,μ) be a probability space. Let W be the set of all integrable non-negative
functions W : S × S → [0,∞), and let Wsym be the subset of symmetric functions. The
integrability assumption is for convenience only; the results extend to arbitrary measurable
non-negative functions if one is a little careful with infinities in the proofs. However, we
shall only need the integrable case.

For W ∈ W , let

λW(x) :=
∫

S
W(x,y) dμ(y) (19)

and

λ′
W(y) :=

∫

S
W(x,y) dμ(x) (20)

denote the marginals of W ; we allow the value +∞, although by our assumption that W

is integrable, λW(x) < ∞ a.e. and λ′
W(y) < ∞ a.e. Note that λW and λ′

W are measurable
functions from S to [0,∞].

Throughout this subsection we work with (4) as the definition of the cut norm: if W ∈
L1(S 2), then

‖W‖� := sup
‖f ‖∞≤1,‖g‖∞≤1

∣
∣
∣
∣

∫

S 2
f (x)g(y)W(x, y) dμ(x)dμ(y)

∣
∣
∣
∣. (21)
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It is immediate from the definition (21) that

‖W‖� ≤ ‖W‖L1(S 2) (22)

and that, for any bounded functions h and k on S ,

‖h(x)k(y)W(x, y)‖� ≤ ‖h‖∞‖k‖∞‖W‖�. (23)

Before stating the main result of this subsection, let us note that if two kernels are close
in the cut norm, then their marginals are close in L1. (This is doubtless well known, but in
any case very easy to see.)

Lemma 2.2 If W1,W2 ∈ W , then ‖λW1 − λW2‖L1(S) ≤ ‖W1 − W2‖�.

Proof If f ∈ L∞(S), then

∫

S

(
λW1(x) − λW2(x)

)
f (x)dμ(x) =

∫

S 2
f (x)

(
W1(x, y) − W2(x, y)

)
dμ(x)dμ(y)

and the result follows from (21), letting g(y) = 1 and taking the supremum over all f with
‖f ‖∞ ≤ 1. (Or simply taking f (x) equal to the sign of λW1(x) − λW2(x).) �

We now turn to the integrals we shall consider, one for each finite graph F . Given a finite
graph F with vertex set {1, . . . , r} and W ∈ Wsym, let

tisol(F,W) :=
∫

Sr

∏

ij∈E(F)

W(xi, xj )

r∏

k=1

e−λW (xk) dμ(x1) . . . dμ(xr). (24)

The reason for the notation is that tisol(F,W) corresponds roughly to 1/n times the expected
number of isolated copies of F in a certain random graph defined from W .

Our aim in this subsection is to prove the following result.

Theorem 2.3 Let F be a tree. Then W �→ tisol(F,W) is a bounded map on Wsym that is
Lipschitz continuous in the cut norm. In other words, there exists a constant C (depending
on F only) such that tisol(F,W) ≤ C for all W ∈ Wsym, and |tisol(F,W) − tisol(F,W ′)| ≤
C‖W − W ′‖� for all W,W ′ ∈ Wsym.

We shall prove Theorem 2.3 via a sequence of lemmas. The first step will be to trans-
form (24) to an integral of a product over edges only, rather than over edges and vertices.
This will involve considering asymmetric kernels, as well as different kernels for different
edges of F .

Given a tree F with r vertices in which each edge has an arbitrary direction, and for
every edge ij ∈ F a (not necessarily symmetric) kernel Wij ∈ W , set

t0
(
F, (Wij )ij∈E(F)

) :=
∫

Sr

∏

ij∈E(F)

Wij (xi, xj ) dμ(x1) . . . dμ(xr). (25)

Note that the exponential factors e−λW (xk) present in (24) are missing from (25).
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We shall reintroduce the exponential factors by attaching them to the kernels Wij . Re-
calling the definitions of the marginals λW and λ′

W in (19) and (20), for real a, b ≥ 0 let

W(a,b)(x, y) := e−aλW (x)W(x, y)e−bλ′
W

(y). (26)

Finally, let di be the (total) degree of vertex i in F . Then, comparing (24) and (25), for every
symmetric W : S 2 → [0,∞) we have

tisol(F,W) = t0
(
F, (W(1/di ,1/dj ))ij

)
. (27)

To study tisol(F,W), we shall first study the map W �→ W(a,b), and then study the behav-
iour of t0 on the restricted set of asymmetric kernels that arise as images of this map.

Lemma 2.4 For every fixed a, b ≥ 0, the map W �→ W(a,b) is Lipschitz continuous on W in
the cut norm; more precisely,

‖W(a,b)

1 − W
(a,b)

2 ‖� ≤ 7‖W1 − W2‖�

for all W1,W2 ∈ W . Also, for every W ∈ W , supx λW(a,b) (x) ≤ e−1/a and supy λ′
W(a,b) (y) ≤

e−1/b.

Surprisingly, this turns out to be the hardest part of the proof of Theorem 2.3.

Proof Let us start with the final inequalities, which are immediate consequences of the
inequality te−t ≤ e−1. Indeed,

λW(a,b) (x) =
∫

S
W(a,b)(x, y) dμ(y) ≤

∫

S
e−aλW (x)W(x, y) dμ(y)

= e−aλW (x)λW (x) ≤ e−1/a,

and similarly λ′
W(a,b) (y) ≤ e−1/b.

Turning to the main assertion, let W1,W2 ∈ W . To simplify the notation set λj := λWj

and λ′
j := λ′

Wj
for j = 1,2. It will turn out that we have to argue separately according to

which of λ1(x) and λ2(x) is larger, and similarly for λ′
1(y) and λ′

2(y). Accordingly, define
the indicator functions

I1(x) = 1[λ1(x) ≤ λ2(x)], I2(x) = 1[λ1(x) > λ2(x)],
I ′

1(y) = 1[λ′
1(y) ≤ λ′

2(y)], I ′
2(y) = 1[λ′

1(y) > λ′
2(y)],

so I1(x) + I2(x) = I ′
1(y) + I ′

2(y) = 1.
We may write W

(a,b)

1 − W
(a,b)

2 , a difference of two three-term products, as a telescopic
sum of three terms in the usual way. In particular, we have

W
(a,b)

1 − W
(a,b)

2 = (
e−aλ1(x) − e−aλ2(x)

)
e−bλ′

1(y)W1(x, y)

+ e−aλ2(x)
(
e−bλ′

1(y) − e−bλ′
2(y)

)
W1(x, y)

+ e−aλ2(x)e−bλ′
2(y)

(
W1(x, y) − W2(x, y)

)
. (28)

It will turn out that this decomposition is only useful when λ1(x) ≤ λ2(x) and λ′
1(y) ≤ λ′

2(y),
so we shall multiply by the indicator function I1(x)I ′

1(y).
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To bound the final term in (28), note that 0 ≤ I1(x)e−aλ2(x) ≤ 1 and 0 ≤ I ′
1(y)e−aλ′

2(y) ≤ 1,
so from (23) we have

∥
∥I1(x)I ′

1(y)e−aλ2(x)e−bλ′
2(y)

(
W1(x, y) − W2(x, y)

)∥
∥

� ≤ ‖W1 − W2‖�. (29)

For the remaining terms we estimate the L1 norm, recalling (22). Turning to the first term,
by the mean value theorem, if λ1(x) ≤ λ2(x) then for some y ∈ [λ1(x), λ2(x)] we have

e−aλ1(x) − e−aλ2(x) = a|λ1(x) − λ2(x)|e−ay ≤ a|λ1(x) − λ2(x)|e−aλ1(x),

where λ1(x) ≤ λ2(x) is used in the final inequality. It follows that

I1(x)
∣
∣e−aλ1(x) − e−aλ2(x)

∣
∣ ≤ a|λ1(x) − λ2(x)|e−aλ1(x).

Thus,

∥
∥I1(x)I ′

1(y)
(
e−aλ1(x) − e−aλ2(x)

)
e−bλ′

1(y)W1(x, y)
∥
∥

L1(S 2)

≤ ∥
∥a |λ1(x) − λ2(x)| e−aλ1(x)W1(x, y)

∥
∥

L1(S 2)

=
∫

S 2
a |λ1(x) − λ2(x)| e−aλ1(x)W1(x, y) dμ(y)dμ(x)

=
∫

S
a |λ1(x) − λ2(x)| e−aλ1(x)λ1(x) dμ(x)

≤ e−1
∫

S
|λ1(x) − λ2(x)| dμ(x) = e−1‖λ1 − λ2‖L1(S)

≤ e−1‖W1 − W2‖�,

where we used te−t ≤ e−1 for the second last step and Lemma 2.2 for the final step.
Similarly, for the second term in (28) we obtain the bound

∥
∥I1(x)I ′

1(y)e−aλ2(x)
(
e−bλ′

1(y) − e−bλ′
2(y)

)
W1(x, y)

∥
∥

L1(S 2)
≤ e−1‖W1 − W2‖�.

Putting these two bounds together with (29), comparing with (28) we see that

∥
∥I1(x)I ′

1(y)
(
W

(a,b)

1 (x, y) − W
(a,b)

2 (x, y)
)∥
∥

� ≤ (1 + 2e−1)‖W1 − W2‖�. (30)

So far we treated the case λ1(x) ≤ λ2(x), λ′
1(y) ≤ λ′

2(y). The remaining three cases are
treated similarly.

More precisely, for λ1(x) ≤ λ2(x), λ′
1(y) > λ′

2(y), we use

W
(a,b)

1 − W
(a,b)

2 = (
e−aλ1(x) − e−aλ2(x)

)
e−bλ′

1(y)W1(x, y)

+ e−aλ2(x)e−bλ′
1(y)

(
W1(x, y) − W2(x, y)

)

+ e−aλ2(x)
(
e−bλ′

1(y) − e−bλ′
2(y)

)
W2(x, y)

in place of (28) to prove the equivalent of (30) with I1(x)I ′
2(y) in place of I1(x)I ′

1(y).
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For λ1(x) > λ2(x), λ′
1(y) ≤ λ′

2(y) we use

W
(a,b)

1 − W
(a,b)

2 = e−aλ1(x)
(
e−bλ′

1(y) − e−bλ′
2(y)

)
W1(x, y)

+ e−aλ1(x)e−bλ′
2(y)

(
W1(x, y) − W2(x, y)

)

+ (
e−aλ1(x) − e−aλ2(x)

)
e−bλ′

2(y)W2(x, y)

to obtain a bound with I2(x)I ′
1(y) as the indicator function.

Finally, for λ1(x) > λ2(x), λ′
1(y) > λ′

2(y) we use

W
(a,b)

1 − W
(a,b)

2 = e−aλ1(x)e−bλ′
1(y)

(
W1(x, y) − W2(x, y)

)

+ (
e−aλ1(x) − e−aλ2(x)

)
e−bλ′

1(y)W2(x, y)

+ e−aλ2(x)
(
e−bλ′

1(y) − e−bλ′
2(y)

)
W2(x, y)

for I2(x)I ′
2(y).

The key point is that in all cases, when we come to apply the bound obtained from
the mean value theorem, when dealing with a term e−aλ1(x) − e−aλ2(x) we obtain a bound
involving e−λi (x) for i = 1 or 2 depending on which of λ1(x) and λ2(x) is larger. For the rest
of the argument to work, it is important that the term we consider contains a factor Wi(x, y)

rather than W3−i (x, y). Similar comments apply to the e−bλ′
1(y) − e−bλ′

2(y) terms. Fortunately,
we can ensure that this is always the case, as shown by the decompositions above. Informally
speaking, we simply choose the right moment to switch from W1 to W2.

Combining (30) and its equivalents, noting that I1(x)I ′
1(y) + I1(x)I ′

2(y) + I2(x)I ′
1(y) +

I2(x)I ′
2(y) = 1, we see that

‖W(a,b)

1 − W
(a,b)

2 ‖� ≤ (4 + 8e−1)‖W1 − W2‖� ≤ 7‖W1 − W2‖�. �

Remark 2.5 Although we do not care about the constant, let us note that the four estimates
(29) above can be combined into a single application of (23), with h(x) = I1(x)e−λ2(x) +
I2(x)e−λ1(x) and k(y) = I ′

1(y)e−λ′
2(y) + I ′

2(y)e−λ′
1(y). This gives 1 + 8e−1 < 4 in place of

4 + 8e−1.

We next turn to the study of t0(F, ·) as defined by (25), restricting our attention to kernels
with bounded marginals. It turns out that we must first study a related function t1, which may
be seen as a rooted version of t0.

Given a rooted directed graph F with vertex set {1,2, . . . , r} and root 1, and functions
Wij ∈ W , let

t1
(
F, (Wij )ij∈E(F);x1

) :=
∫

Sr−1

∏

ij∈E(F)

Wij (xi, xj ) dμ(x2) . . . dμ(xr).

Note that this is a function of x1 ∈ S , and that

t0
(
F, (Wij )ij∈E(F)

) =
∫

S
t1

(
F, (Wij )ij∈E(F);x

)
dμ(x). (31)

Let WB := {W ∈ W : supx λW (x), supy λ′
W(y) ≤ B}.
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Lemma 2.6 Let F be a rooted directed tree and (Wij )ij∈E(F) a family with Wij ∈ WB for
all ij . Then for all x ∈ S ,

t1
(
F, (Wij )ij∈E(F);x

) ≤ Be(F).

Proof A simple induction on the number e(F ) of edges of F . If e(F ) = 0, so F consists of
just a single vertex, then both sides are equal to 1. For e(F ) > 0, pick a leaf v of F that is
not the root, with neighbour w. We may assume without loss of generality that the edge wv

is oriented from w to v. In the integrand appearing in the left hand side above, there is only
one factor that depends on xv , namely Wwv(xw, xv). Integrating out over xv , this integrates
to λWwv (xw). Replacing λWwv (xw) by B , which is an upper bound by assumption, we see
that t1(F, ·;x) ≤ Bt1(F − v, ·;x), and the result follows by induction. �

Returning to the unrooted case, we are now ready for the final step in the proof of Theo-
rem 2.3.

Lemma 2.7 Let F be a directed tree, and B < ∞ a constant. For all families (Wij )ij∈E(F)

and (W ′
ij )ij∈E(F) with Wij ,W

′
ij ∈ WB , we have

t0
(
F, (Wij )ij∈E(F)

) ≤ Be(F) (32)

and

∣
∣t0

(
F, (Wij )ij∈E(F)

) − t0
(
F, (W ′

ij )ij∈E(F)

)∣
∣ ≤ Be(F)−1

∑

ij∈E(F)

‖Wij − W ′
ij‖�. (33)

Proof The bound (32) is immediate from (31) and Lemma 2.6 by choosing an arbitrary root.
For the Lipschitz estimate (33), it suffices to treat the case where the families Wij and

W ′
ij differ only on a single edge ij , say ij = 12. In this case, let F1 and F2 be the two

components of F \ {12}, and regard these as rooted trees with roots 1 and 2, respectively.
Then, simplifying the notation,

t0
(
F, (Wij )ij

) =
∫

S 2
t1(F1;x1)t1(F2;x2)W12(x1, x2) dμ(x1) dμ(x2)

and similarly for (W ′
ij ). Thus, by (21),

∣
∣t0

(
F, (Wij )ij

) − t0
(
F, (W ′

ij )ij

)∣
∣

=
∣
∣
∣
∣

∫

S 2
t1(F1;x1)t1(F2;x2)

(
W12(x1, x2) − W ′

12(x1, x2)
)
dμ(x1) dμ(x2)

∣
∣
∣
∣

≤ ‖t1(F1)‖∞‖t1(F2)‖∞‖W12 − W ′
12‖�.

The result follows by Lemma 2.6. �

Putting the pieces together, Theorem 2.3 follows.

Proof of Theorem 2.3 In the light of (27), this is immediate from Lemmas 2.4 and 2.7. �
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2.3 Small Components

Let Nk(G) denote the number of vertices of a graph G in components of order k, and let
ρk(κ) denote the probability that Xκ consists of exactly k particles in total. Our next aim is
to prove the following lemma. Recall that An is always assumed to be n-by-n.

Lemma 2.8 Let (An) be a sequence of non-negative symmetric matrices converging in δ�
to a kernel κ , and let k ≥ 1 be fixed. Then ENk(G(An))/n → ρk(κ).

As usual in sparse random graphs, the dominant contribution will be from tree compo-
nents. We start with a simple lemma showing that cyclic components can be neglected.

Let us call a sequence (An) of non-negative symmetric matrices (in which An is n-by-n
as usual) well behaved if all the diagonal entries are zero, and maxAn = o(n), where maxAn

is the largest entry in An. One useful property of such sequences is that for them, the models
G(An) and GPo(An) are essentially equivalent, as shown by the following simple lemma.

Lemma 2.9 Let κ be a kernel and let (An) be a sequence of well-behaved matrices with
δ�(An, κ) → 0. Let A′

n be the matrix with entries defined by (2). Then δ�(A′
n, κ) → 0.

Proof For n large enough that maxaij ≤ n/2, say, from (2) we have |aij − a′
ij | = O(a2

ij /n),
with the implicit constant C absolute. It follows that

∑

ij

|aij − a′
ij | ≤ C

∑

ij

a2
ij /n ≤ C max{aij /n}

∑

ij

aij = o(1)
∑

ij

aij ,

using the well-behavedness assumption. Since δ�(An, κ) → 0, we have
∑

aij ∼ n2
∫

κ =
O(n2). Hence

δ�(κAn, κA′
n
) ≤ ‖κAn − κA′

n
‖L1 = n−2

∑

ij

|aij − a′
ij | = o(1),

and the result follows. �

The point of Lemma 2.9 is that if we can prove that GPo(An) has a certain property
whenever δ�(An, κ) → 0, then the same result for G(An) follows: we simply express G(An)

as GPo(A
′
n) as in (1), and apply our result for GPo(·) to the sequence (A′

n).
Our next lemma shows that the graphs we consider have few vertices in small components

containing cycles. Let N t
k(G) denote the number of vertices of a graph G in tree components

of order k, and N c
k (G) the number in cyclic components of order k, so Nk(G) = N t

k(G) +
N c

k (G).

Lemma 2.10 Let (An) be a sequence of well-behaved matrices and k ≥ 2 an integer. Then
EN c

k (Gn) = o(n), where Gn = Gm
Po(An).

Note that in this lemma there is no convergence assumption. Note also that Lemma 2.10
immediately implies a corresponding result for GPo(An), which is simply the simple graph
underlying Gm

Po(An), and so satisfies N c
k (GPo(An)) ≤ N c

k (G
m
Po(An)). It also implies a corre-

sponding result for G(An); this may be deduced from the result for GPo(An) by expressing
G(An) as GPo(A

′
n) as above.
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Proof We shall consider an evolving version Gn(t) of Gn. To define this, for each possi-
ble edge ij , construct a Poisson process on [0,1] with intensity aij /n; the points of these
processes will be the birth times of the ij edges. Let Gn(t) be the graph formed by all edges
born by time t , noting that the number of ij edges in Gn(1) is Poisson with mean aij /n.
Taking the processes independent, Gn(1) thus has the distribution of Gn = Gm

Po(An).
Let M≤k(G) denote the number of cyclic components of a (multi-)graph G of order at

most k; thus N c
k (G) ≤ kM≤k(G).

Let f (t) denote the expectation of M≤k(Gn(t)); then f (0) = 0 and f (1) = EM≤k(Gn),
so EN c

k (Gn) ≤ kf (1), and it suffices to show that the derivative of f is bounded above by
o(n). Condition on Gn(t), and consider the edges born in a short time interval [t, t + dt].
Taking dt small enough, the probability that there is more than one such edge in any interval
[t, t + dt] is negligible. The only way we can have M≤k(G + e) ≥ M≤k(G) is if e joins two
vertices i, j in some component of G of order at most k. There are at most kn such pairs
of vertices. Since the aij are uniformly bounded by o(n), the probability aij dt/n of adding
e = ij is o(dt), and the probability of adding some such edge is o(kndt) = o(ndt). Adding
such an edge increases M≤k by at most 1, so the expected increase in time dt is at most
o(ndt) as required. �

We are now ready to prove Lemma 2.8.

Proof of Lemma 2.8 We claim that it suffices to prove the lemma under the assumption that
(An) is well behaved, i.e., maxAn = o(n), and the diagonal entries are 0.

To see this, note that by Lemma 2.1 there is some δ = δ(n) → 0 such that at most δn

entries of An exceed δn, and the sum of these entries is at most δn2. Define A′
n = (a′

ij ) by
setting a′

ij = 0 if aij > δn or if i = j , and setting a′
ij = aij otherwise. Then

δ�(An,A
′
n) ≤ 1

n2

∑
|aij − a′

ij | =
1

n2

∑

aij >δn

aij + 1

n2

∑

i:aii≤δn

aii ≤ δ + δ = o(1).

Hence δ�(A′
n, κ) → 0, so the sequence A′

n and kernel κ satisfy the assumptions of the
lemma, and (A′

n) is well behaved. In establishing our claim we may thus assume that

ENk(G(A′
n))/n → ρk(κ). (34)

But then the same result for G(An) follows almost immediately. Indeed, we may assume
that G(A′

n) ⊂ G(An), and we have

E
(
E(G(An)) \ E(G(A′

n))
) = E

(
e(G(An)) − e(G(A′

n))
) ≤ 1

n

∑
|aij − a′

ij | = o(n).

Since adding an edge to a graph G changes Nk(G) by at most 2k, it follows that

E|Nk(G(An)) − Nk(G(A′
n))| = o(n),

which with (34) proves the same statement for An, establishing the claim.
From now on we suppose as we may that (An) is well behaved. In the light of Lemma 2.9

we may work with GPo(An) instead of G(An). In fact, we shall work with Gn = Gm
Po(An),

which has exactly the same component structure as GPo(An).
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Given a loopless multi-graph F on [k] and a sequence v = (v1, . . . , vk) with 1 ≤ vi ≤ n

for each i, set

pv(F ) = pv(F,An) =
∏

ij∈E(F)

avivj

n

∏

uw:{u,w}∩{vi }=∅
e−auw/n, (35)

where the second product is over all edges uw of the complete graph on [n] meeting
{v1, . . . , vk}.

Let us call a sequence v = (v1, . . . , vk) good if the vi are distinct, and bad otherwise. If F

is a simple graph and v is good, then pv(F ) is the probability that the vertices v1, . . . , vk of
Gn = Gm

Po(An) form a component isomorphic to F , with the ith vertex of F mapped to vi .
Hence, writing nF (Gn) for the number of components of Gn isomorphic to F , for simple F

we have

EnF (Gn) = 1

aut(F )

∑

v good

pv(F ).

Our aim is to relate this sum with F a tree to tisol(F, κAn), and hence to tisol(F, κ).
Let λκ(x) denote the marginal of κ , defined by (19). For 1 ≤ i ≤ n, set

λn(i) = 1

n

∑

j

aij ,

so λn is essentially the marginal of κAn . (More precisely, λn(i) gives the value of the marginal
of κAn at any point of the interval of length 1/n corresponding to vertex i ∈ [n].)

Given a multi-graph F and a (not necessarily good) sequence v, let

p0
v(F ) = p0

v(F,An) =
∏

ij∈E(F)

avivj

n

k∏

i=1

e−λn(vi ). (36)

Expanding each term λn(vi) and then comparing (35) and (36), we see that if v is good
then the only difference is that certain factors exp(−auw/n) appear twice in (36) and only
once in (35), namely such factors with u,w ∈ {v1, . . . , vk}. Since there are

(
k

2

) = O(1) such
factors and each is (by our well-behavedness assumption) 1 + o(1), we have

pv(F ) ∼ p0
v(F ) (37)

uniformly in good sequences v. Hence, for simple F ,

EnF (Gn) ∼ 1

aut(F )

∑

v good

p0
v(F ). (38)

Specializing now to the case of a tree T on [k], recalling (24) we have

tisol(T , κAn) = n−k
∑

v

∏

ij∈E(T )

avivj

k∏

i=1

e−λn(vi ),

so
∑

v

p0
v(T ) = ntisol(T , κAn).
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Our next aim is to show that

∑

v bad

p0
v(T ) = o(n). (39)

Once we have done so, it follows from the formulae above that

EnT (Gn) = o(n) + (1 + o(1))n
tisol(T , κAn)

aut(T )
. (40)

In any sequence v contributing to (39), at least one pair vi , vj coincides. Since aii = 0 for
every i, we may assume that if ij ∈ E(T ), then vi = vj . Let us fix a pattern of coincidences,
i.e., decide for which pairs {i, j} we have vi = vj . The contribution to (39) from a given
pattern may be bounded by

X(F) =
∑

w good

p0
w(F ), (41)

where F is the multi-graph formed from T by identifying the appropriate vertices, and
w1, . . . ,ws runs over the distinct vertices among v1, . . . , vr . Indeed, the only difference is
that in the contribution to (39) we have factors e−diλn(wi ) rather than e−λn(wi ) in (41), where
di ≥ 1 is the number of the vj that are mapped to wi .

Note that F is connected. If F is simple, then using (38) again we have

X(F) ∼ aut(F )EnF (Gn) = O(n),

since nF (Gn) ≤ n. Moreover, if F is simple and not a tree, then by Lemma 2.10 we have
X(F) = o(n).

If F is not simple, let F ′ be the underlying simple graph. Then the terms of the sums
defining F ′ and F are in one-to-one correspondence, and each term for F ′ is the term for F

multiplied by e(F ) − e(F ′) ≥ 1 factors of the form aij /n. Each such factor is o(1), so we
have X(F) = o(X(F ′)). We have just seen that X(F ′) = O(n) for any connected simple F ′,
so if F is not simple we have X(F) = o(n).

Recall that we could write the sum in (39) as a sum of over O(1) patterns of terms each
bounded by X(F) for some graph F arising from identifying some sets of non-adjacent
vertices of T . Any such graph contains either a cycle or one or more multiple edges, so
X(F) = o(n) in all cases, establishing (39). As noted above, (40) follows.

Recall that δ�(κAn, κ) → 0. By Theorem 2.3 we thus have tisol(T , κAn) → tisol(T , κ) <

∞, so

EnT (Gn) = ntisol(T , κ)/ aut(T ) + o(n). (42)

Let Xκ
∼= T denote the event that the branching process Xκ when viewed as a tree is

isomorphic to T (which implies that it has total size k). We claim that

P(Xκ
∼= T ) = k

aut(T )
tisol(T , κ). (43)

In fact, the version of (43) for a rooted tree T , which is the same except that the factor k

is omitted, is easily proved using induction on k (see [7]), and then (43) follows easily by
summing over the different rootings of T .
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Hence, summing over all isomorphism types of trees on k vertices,

ρk(κ) = k
∑

T

tisol(T , κ)

aut(T )
,

and from (42),

EN t
k(Gn) = E

(

k
∑

T

nT (Gn)

)

= kn
∑

T

tisol(T , κ)

aut(T )
+ o(n) = ρk(κ)n + o(n).

Since EN c
k (Gn) = o(n) by Lemma 2.10, it follows that ENk(Gn) = ρk(κ)n + o(n) as re-

quired, where Gn = Gm
Po(An). Since Gm

Po(An) and GPo(An) have the same components, the
corresponding statement for GPo(An) follows immediately, so we have proved a version of
Lemma 2.8 for the model GPo(·). As noted earlier, by Lemma 2.9, Lemma 2.8 follows. �

Recall that a matrix denoted An is assumed to be n-by-n.

Lemma 2.11 Let (An) be a sequence of non-negative symmetric matrices converging in δ�
to a kernel κ , and let k ≥ 1 be fixed. Then Nk(G(An))/n

p→ ρk(κ).

Proof As in [6] or [7], this extension of Lemma 2.8 requires almost no extra work: simply
repeat the proof of Lemma 2.8 but considering pairs of components of order k to show that
with N = Nk(G(An)) we have EN2/n2 → ρk(κ)2. Since EN/n → ρk(κ) by Lemma 2.8, it
follows that Var(N/n) = o(1), so N/n is concentrated about its mean. �

As in [6] or [7] we have the following corollary, where N≥ω = ∑
k≥ω Nk .

Corollary 2.12 Let (An) be a sequence of non-negative symmetric matrices converging
in δ� to a kernel κ . Then whenever ω = ω(n) tends to ∞ sufficiently slowly we have

N≥ω(G(An))/n
p→ ρ(κ).

When we have completed the proof of Theorem 1.1, it will follow (arguing as in the proof
of Theorem 1.2 in the reducible case) that Corollary 2.12 in fact holds for every ω(n) → ∞
with ω(n) = o(n).

2.4 Connecting the Large Components

To complete the proof of Theorem 1.1 we shall use a modified form of the Erdős–Rényi
‘sprinkling’ argument to show that almost all vertices in ‘large’ components are in fact in
a single component. We need a strengthened form of a lemma implicit in Bollobás, Borgs,
Chayes and Riordan [7]. Before stating this, let us recall another lemma from [7] (again
modified, but this time in a trivial way). By an (a, b)-cut in a kernel κ we mean a partition
(A,Ac) of [0,1] with a ≤ μ(A) ≤ 1 − a such that

∫
A×Ac κ ≤ b.

Lemma 2.13 Let κ be an irreducible kernel, and let 0 < a < 1
2 be given. There is some

b = b(κ, a) > 0 such that κ has no (a, b)-cut.

Proof The same statement is proved in [7, Lemma 7], but for graphons, i.e., bounded ker-
nels; all kernels considered in [7] were bounded. Although as it happens we shall only use
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the bounded case, we may as well note that the restriction is entirely irrelevant. Indeed, irre-
ducibility of a kernel κ depends only on whether certain integrals are 0, and hence only on
the set where κ > 0. So if κ is irreducible, so is the pointwise minimum κ ′ of κ and 1. If κ

has an (a, b)-cut, then so does κ ′, so the result follows from the bounded case. �

Here then is the key lemma that we shall need.

Lemma 2.14 Let κ be an irreducible kernel and δ > 0 a constant. There are positive con-
stants α = α(κ, δ) and c = c(κ, δ) such that for every sequence (An) of non-negative sym-
metric matrices with δ�(An, κ) → 0, for all large enough n we have

P(X ∼αn Y ) ≥ 1 − exp(−cn)

for all disjoint X, Y ⊂ [n] with |X|, |Y | ≥ δn, where X ∼k Y denotes the event that the
graph G(An) contains at least k vertex disjoint paths starting in X and ending in Y .

A version of this lemma, but with the additional condition that the kernel κ and entries of
the matrices An are uniformly bounded, is implicit in [7] (see [8, Lemma 4.2]). Although the
basic strategy of the proof of Lemma 2.14 is the same as that in [7], dealing with unbounded
kernels requires considerable care, so we shall write out the proof in full.

Proof We write (aij ) for the entries of An, suppressing the dependence on n. As before, by
Lemma 2.1 we may assume that maxaij = o(n), and in particular that aij ≤ n/100, say. We
may also assume that δ < 1/10, say.

Throughout this proof we view An as a (dense) weighted graph. In particular, given sets
V and W of vertices of An, i.e., subsets of [n], we write

e(V,W) =
∑

v∈V

∑

w∈W

avw

for the total edge weight from V to W . Similarly, for v ∈ [n] and W ⊂ [n],

e(v,W) = e({v},W) =
∑

w∈W

avw.

Let κ− = κ ∧ 1 be the pointwise minimum of κ and 1. Since δ�(An, κ) → 0, there are
rearrangements κn of κ such that

‖κAn − κn‖� → 0. (44)

Let κ−
n = κn ∧ 1, noting that κ−

n is a rearrangement of κ−.
Identifying a subset of [n] with the union of the corresponding intervals of length 1/n in

[0,1], for subsets V and W of [n] we set

e0(V ,W) = n2
∫

V ×W

κn(x, y) dx dy

and

e−
0 (V ,W) = n2

∫

V ×W

κ−
n (x, y) dx dy.
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From (44) there is some η(n) → 0 such that

∣
∣e(V,W) − e0(V ,W)

∣
∣ = n2

∣
∣
∣
∣

∫

V ×W

(κAn − κn)

∣
∣
∣
∣ ≤ n2η(n)

for all V and W . Since κ ≥ κ−, so e0(V ,W) ≥ e−
0 (V ,W), it follows that

e(V,W) ≥ e−
0 (V ,W) − n2η(n). (45)

By Lemma 2.13 there is some b > 0 such that κ− has no (δ/2, b)-cut. We may and shall
assume that b < 1/10, say. Since each κ−

n is a rearrangement of κ−, no κ−
n has a (δ/2, b)-cut.

Fix disjoint sets X and Y of vertices, each of size at least δn. Arguing as in [7], we
shall inductively define an increasing sequence S0, S1, . . . , S� of sets of vertices in a way
that depends on An, X and Y , but not on the random graph G(An). There will be some
additional complications due to unbounded matrix entries; it turns out we can sidestep these
with appropriate use of the inequality (45).

We start with S0 = X, noting that |S0| ≥ δn. We shall stop the sequence when |St | first
exceeds (1 − δ/2)n. Thus, in defining St+1 from St , we may assume that δn ≤ |St | ≤ (1 −
δ/2)n. Since κ−

n has no (δ/2, b)-cut, we have

∑

v /∈St

e−
0 (v, St ) = e−

0 (Sc
t , St ) = n2

∫

Sc
t ×St

κ−
n ≥ bn2.

Let

Tt+1 = {v /∈ St : e−
0 (v, St ) ≥ bn/2}.

Since κ−
n ≤ 1 holds pointwise, e−

0 (v, St ) ≤ |St | ≤ n for any v. Thus

bn2 ≤ e−
0 (Sc

t , St ) ≤ bn

2

∣
∣[n] \ (St ∪ Tt+1)

∣
∣ + n|Tt+1| ≤ bn2

2
+ n|Tt+1|.

Hence |Tt+1| ≥ bn
2 . Set St+1 = St ∪ Tt+1, and continue the construction until we reach an S�

with |S�| ≥ (1 − δ/2)n. Note that � ≤ 2/b = O(1).
We shall now turn to the random graph G(An), uncovering the edges between Tt and

St−1, working backwards from T�. It will be convenient to set T0 = S0, so St = ⋃t

j=0 Tj .
Since |S�| ≥ (1 − δ/2)n, while |Y | ≥ δn, the set S� contains at least δn/2 vertices from Y .
Since S0 = T0 = X is disjoint from Y , it follows that there is some t0, 1 ≤ t0 ≤ �, for which
Tt0 contains a subset Y0 of Y with

|Y0| ≥ δn/(2�).

Next, we aim to construct a set X0 ⊂ St0−1 with |X0| ≥ b|Y0|/10 such that every x ∈ X0

is joined to some y ∈ Y0 by an edge of G(An). In fact, we shall look for a partial matching
from Y0 to St0−1 of size exactly

N = b|Y0|/10;
we ignore the irrelevant rounding to integers. Let us list the vertices of Y0 as {y1, . . . , ys}.
We shall test each yi in turn to see whether it has a neighbour in St0−1; the complication
is that we must avoid vertices of St0−1 that are neighbours of earlier yj . We shall also stop
looking for new neighbours if we already have a large enough matching.
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Formally, we inductively define subsets Z0,Z1, . . . ,Zs of St0−1, starting with Z0 = ∅.
For 1 ≤ i ≤ s, if |Zi−1| = N then we set Zi = Zi−1. If |Zi−1| < N and yi has a neighbour
z ∈ St0−1 \ Zi−1, we set Zi = Zi−1 ∪ {z} for any such neighbour z. If no such neighbour
exists, we set Zi = Zi−1. Note that Z0 ⊂ Z1 ⊂ · · · ⊂ Zs is a random sequence of sets, and
|Zs | ≤ N .

We claim that the following statement holds deterministically: if n is large enough, then
there are at least s/2 values of i for which

e(yi, St0−1 \ Zi−1) ≥ bn/4. (46)

Suppose that this claim does not hold, and let Y ′ ⊂ Y0 be a set of at least s/2 vertices yi

for which e(yi, St0−1 \ Zi−1) < bn/4. Since Zi−1 ⊂ Zs , for all y ∈ Y ′ we have e(y,St0−1 \
Zs) < bn/4. Summing over y, we have

e(Y ′, St0−1 \ Zs) < bn|Y ′|/4.

From (45) it follows that

e−
0 (Y ′, St0−1 \ Zs) < bn|Y ′|/4 + n2η(n).

On the other hand, since Y ′ ⊂ Tt0 , we have

e−
0 (Y ′, St0−1) ≥ bn|Y ′|/2.

Consequently,

e−
0 (Y ′,Zs) = e−

0 (Y ′, St0−1) − e−
0 (Y ′, St0−1 \ Zs) > bn|Y ′|/4 − n2η(n).

Since |Y ′| ≥ |Y |/2 = �(n), we see that if n is large enough, then e−
0 (Y ′,Zs) ≥ bn|Y ′|/5.

But κ− is bounded by 1, so

e−
0 (Y ′,Zs) ≤ |Y ′||Zs | ≤ |Y ′|N = |Y ′|(b|Y0|/10) < bn|Y ′|/5.

This contradiction establishes the claim.
Suppose that for some i we have e(yi, St0−1 \ Zi−1) ≥ bn/4. Then the expected number

of edges of G(An) from y to St0−1 \ Zi−1 is at least b/4, so the probability that there is at
least one such edge is at least b/5.

From the claim above, and independence of edges from different vertices y, it follows
that unless we reach |Zi | = N at some stage, the number of edges in the matching we find
stochastically dominates a Binomial distribution D with parameters |Y0|/2 and b/4. More
precisely, the probability that |Zs | < N is at most the probability that D < N . But D has
mean |Y0|b/8 ≥ N = |Y0|b/10. Since |Y0| = �(n), it follows (by Chernoff’s inequality) that
with probability 1 − exp(−�(n)) we have |Zs | ≥ N .

In summary, with probability at least 1 − exp(−�(n)) we find a set X0 = Zs of at least
b|Y0|/10 vertices of St0−1 such that every x ∈ X0 is joined to some y = y(x) ∈ Y0 by an edge
of G(An), with the y(x) distinct.

Suppose we do find such an X0. As |X0| ≥ b|Y0|/10, there is some t1 < t0 such that
Y1 = X0 ∩ Tt1 contains at least b|Y0|/(10�) vertices. If t1 ≥ 1 then, arguing as above, with
probability 1 − exp(−�(n)) we find a t2 and a set Y2 of at least b2|Y0|/(10�)2 vertices of
Tt2 joined in G(An) to Y1, and so on. As the sequence t0, t1, . . . is decreasing, this process
terminates after s ≤ � steps with ts = 0. Hence, with probability 1 − exp(−�(n)) we find a
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set Ys of at least (b/(10�))�|Y0| = �(n) vertices of T0 = S0 = X joined in G(An) by vertex
disjoint paths to vertices in Y , completing the proof of Lemma 2.14. �

As in [7], Corollary 2.12 and Lemma 2.14 easily combine to give Theorem 1.1.

Proof of Theorem 1.1 Let Gn = G(An). By Corollary 2.12 there is some ω = ω(n) with

ω(n) → ∞ such that N≥ω(Gn)/n
p→ ρ(κ). We may and shall assume that ω = o(n). Since

C1(Gn) + C2(Gn) ≤ max{2ω,N≥ω(Gn) + ω} ≤ ρ(κ)n + op(n),

it suffices to prove that if κ is irreducible then

C1(Gn) ≥ ρ(κ)n + op(n). (47)

If ρ(κ) = 0, then this statement holds vacuously, so suppose that κ is irreducible and
ρ(κ) > 0.

Fix 0 < ε < ρ(κ)/10. By [6, Theorem 6.4] we have ρ((1 − γ )κ) ↗ ρ(κ) as γ → 0. Fix
0 < γ < 1 such that ρ((1 − γ )κ) > ρ(κ) − ε.

Let G′
n = G((1 − γ )An) and G′′

n = G(γAn) be independent. We may and shall assume
that G′

n ∪ G′′
n ⊆ Gn. Applying Corollary 2.12 to the sequence (1 − γ )An, which tends to

(1 − γ )κ in δ�, we see that there is an ω = ω(n) tending to infinity such that

N≥ω(G′
n) ≥ (ρ((1 − γ )κ) − ε)n ≥ (ρ(κ) − 2ε)n (48)

holds whp. Let us condition on G′
n assuming that (48) does hold. Let B be the set of vertices

of G′
n in components of size at least ω (we call these components large), so |B| ≥ (ρ(κ) −

2ε)n.
If C1(Gn) ≤ (ρ(κ) − 3ε)n then there is a partition (X,Y ) of B such that |X|, |Y | ≥ εn,

with no path in Gn joining X to Y . Let us call such a partition bad. Since G′
n ⊂ Gn, each

of X and Y must be a union of large components of G′
n, so there are at most 2n/ω(n) choices

for (X,Y ). But the probability that a given pair (X,Y ) is bad is at most the probability that
there is no path in G′′

n ⊂ Gn from X to Y ; by Lemma 2.14 this probability is exp(−�(n)).
Hence the expected number of bad partitions is o(1), and whp there is no such partition.
Thus C1(Gn) ≥ (ρ(κ) − 3ε)n whp. Letting ε → 0, the bound (47) follows, and this is all
that is required to complete the proof of Theorem 1.1. �

2.5 The Reducible Case: Proof of Theorem 1.2

In this subsection we shall justify the terminology by showing that one can reduce the re-
ducible case to the irreducible case. Surprisingly, in this setting (unlike that of [8]), this is
not quite immediate.

The key step is a lemma allowing us to partition a sequence of matrices converging to
a reducible kernel. By the restriction κS of a kernel κ to a set S ⊂ [0,1] we simply mean
the function obtained by restricting κ to S × S , which we may think of as a kernel on a
measure space that is no longer a probability space. It will often be convenient to consider
the rescaled restriction κ ′

S : when S is an interval (which we can always assume) this is the
kernel on [0,1]2 obtained by linearly ‘stretching’ κS in the obvious way.

Lemma 2.15 Let κ be a reducible kernel and (S1, S2) a partition of [0,1] with 0 <

μ(S1),μ(S2) < 1 such that κS1 is irreducible and κ is zero a.e. on S1 × S2. If (An) is
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a sequence of non-negative symmetric matrices such that δ�(An, κ) → 0 then we may
find for each n complementary subsets Vn,1 and Vn,2 of [n] such that |Vn,i | ∼ μ(Si )n and
δ�(An,i , κ

′
i ) → 0, where κ ′

i = κ ′
Si

is the rescaled restriction of κ to Si and An,i is the princi-
pal minor of An obtained by selecting the rows and columns indexed by Vn,i . Moreover, the
sum of the entries of An corresponding to (i, j) ∈ Vn,1 × Vn,2 is o(n2).

In other words, we may split the vertex set of the random graph G(An) into Vn,1 and Vn,2

so that the corresponding random graphs have edge probability matrices converging to the
restrictions of κ to S1 and S2 respectively (after suitable rescaling).

Proof Suppose that δ�(An, κ) → 0. Let (τn) be a sequence of measure-preserving bi-
jections from [0,1] to itself, corresponding to rearrangements of the kernels κAn . Let
In,i = ((i − 1)/n, i/n] denote the subinterval of [0,1] corresponding to vertex i, i.e., to
the ith row/column of An. Then, in the rearrangement, In,i ∩ τn(Sj ) is the portion of In,i that
is rearranged to correspond to part of Sj . We write

sn,i = min
j=1,2

μ
(
In,i ∩ τn(Sj )

)

for the extent that In,i is split between S1 and S2, noting that 0 ≤ sn,i < μ(In,i) = 1/n.
We call the sequence (τn) good if

‖κ(τn)
An

− κ‖� → 0, (49)

and

sn =
n∑

i=1

sn,i = o(1).

Such a good sequence corresponds to rearranging An to be close to κ in the cut norm, while
mapping almost every vertex either almost entirely into S1 or almost entirely into S2. It is
not too hard to check that if such a sequence exists, then the first conclusion of the lemma
follows; we omit the tedious details, noting only that since κ is integrable, for any subsets
Xn of [0,1]2 with measure tending to 0 we have

∫
Xn

κ → 0. This shows that changing our
rearrangement on a set of measure o(1) will not affect cut norm convergence. To see that the
final statement follows, let Un,j be the subset of [0,1] corresponding to Vn,j . Then

∫

Un,1×Un,2

κAn =
∫

τ−1
n (Un,1)×τ−1

n (Un,2)

κ
(τn)
An

≤ ‖κ(τn)
An

− κ‖� +
∫

τ−1
n (Un,1)×τ−1

n (Un,2)

κ = o(1),

since τ−1
n (Un,j ) differs from Sj in a set of measure o(1).

It remains to prove that a good sequence exists. By hypothesis, there is a sequence (τn)

such that (49) holds; as we shall see, any such sequence must be good! Indeed, suppose sn

does not tend to zero. Then, passing to a subsequence, we may assume that sn ≥ δ for every
n, for some δ > 0.

For every n in our (sub)sequence, and each i ∈ [n], pick subsets Ei,1,Ei,2 of In,i of
measure sn,i with Ei,j ⊂ τn(Sj ); this is possible by the definition of sn,i . Finally, for j = 1,2,
let Ej = ⋃n

i=1 Ei,j , noting that Ej depends on n, and that μ(Ej ) = sn ≥ δ.
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Since τ−1
n (E2) ⊂ S2, we have

∫
τ−1
n (E2)×S1

κ = 0. From (49) and the definition of the cut

norm it follows that
∫

E2×τn(S1)
κAn = o(1). But

∫

E1×τn(S1)

κAn =
∫

E2×τn(S1)

κAn,

since κAn(x, y) depends on x only through which interval In,i the point x lies in, and E1 and
E2 intersect each In,i in sets of the same measure. Hence,

∫
E1×τn(S1)

κAn = o(1), and, using
(49) again, I = ∫

τ−1
n (E1)×S1

κ = o(1).

But κS1 is irreducible, so for a.e. x in S1 we have f (x) = ∫
S1

κ(x, y) dy > 0. It follows
that there is some γ > 0 such that the integral of f over any subset of S1 of measure at least
δ is at least γ . But I is exactly such an integral, since τ−1

n (E1) ⊂ S1, giving a contradiction.
This contradiction shows that (τn) is indeed good, completing the proof. �

Using Lemma 2.15, it is not hard to deduce Theorem 1.2 from Theorem 1.1.

Proof of Theorem 1.2 Multiplying the kernel κ by c, we may and shall assume that c = 1.
Part (a) of Theorem 1.2 follows from the first statement of Theorem 1.1; part (c) is a

restatement of the second statement of Theorem 1.1, so it remains only to prove part (b).
As shown in [6, Lemma 5.17], we may decompose κ into irreducible kernels. More

precisely, there is a partition (Si )
N
i=0 of [0,1] with 0 ≤ N ≤ ∞ such that each Si has positive

measure, the restriction κi of κ to Si × Si is irreducible for each i ≥ 1, and κ is zero a.e. off⋃N

i=1 Si × Si .
By assumption, δ�(An, κ) → 0. Applying Lemma 2.15 repeatedly, for any finite N ′ ≤ N

we may split the vertex set [n] of the graph Gn into N ′ + 1 subsets Vn,i , i = 0,1, . . . ,N ′,
such that, for each i = 0, |Vn,i | ∼ μ(Si )n and δ�(A′

n,i , κ
′
i ) → 0, where A′

n,i is the submatrix
of An corresponding to Vn,i , and κ ′

i = κ ′
Si

is the rescaled restriction of κ to Si . Let Gn,i be
the subgraph of Gn induced by Vn,i .

In what follows it is convenient to add zero rows and columns to A′
n,i to obtain an n-by-n

matrix An,i , and to consider the kernel κi on [0,1]2 agreeing with κ on S 2
i and equal to zero

off this set. It is easy to check that δ�(A′
n,i , κ

′
i ) → 0 implies δ�(An,i , κi) → 0. Although κi

is formally reducible, it is so only in a trivial sense (called quasi-irreducible in [6]), and by
rescaling suitably it is easy to check that Theorem 1.1 applies to such kernels (with, as it

happens, no extra factors from the rescaling), so by Theorem 1.1 we have C1(Gn,i)/n
p→

ρ(κi) for each i ≥ 1.
By assumption, ‖Tκ‖ > 1. But

‖Tκ‖ = sup
i

‖Tκi
‖, (50)

so there is some i with ‖Tκi
‖ > 1. We choose N ′ ≥ i. Since C1(Gn) ≥ C1(Gn,i), it follows

that C1(Gn) = �(n) whp as claimed. Finally, suppose that κ is bounded, by M , say. Since
‖Tκi

‖ ≤ Mμ(Si ), only finitely many of the Tκi
can have norm exceeding any constant, and

the supremum in (50) is attained, say at i = j . As noted in [7], the bound ρ(κ) ≥ (‖Tκ‖ −
1)/ supκ is implicit in [6]. Applying this to κj , the final part of Theorem 1.2(b) follows. �

Note that we cannot say what the limiting size of the giant component is in the reducible
case: we know that there are op(n) edges joining different Gn,i , but have no further control
on these edges (which may be completely absent), so we do not know whether they link
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the largest components in the different Gn,i or not. Thus C1(Gn)/n may be as small as
maxi ρ(κi) + op(1), or as large as ρ(κ) + op(1) = ∑

i ρ(κi) + op(1).
Let us close this subsection with a conjecture. By a rearrangement Bn of a matrix An we

simply mean a matrix obtained from An by applying some permutation to the columns, and
the same permutation to the rows.

Conjecture 1 Let κ be a kernel, and (An) a sequence of non-negative symmetric matrices
in which An is n-by-n, such that δ�(An, κ) → 0. Then there exist rearrangements Bn of each
An such that ‖κBn − κ‖� → 0.

A proof of this conjecture would give a simpler reduction of the irreducible case to the
reducible one. We can prove versions of this conjecture with various additional assumptions.
Suppose first that κ is of finite type. Then the proof of Lemma 2.15 adapts easily to give the
desired rearrangements: first show that in rearrangements (almost) realizing the cut distance,
there is no significant splitting of vertices between the parts of κ (unless two parts of κ are
‘equivalent’, but then they may be united into a single part). This leads eventually to a
rearrangement mapping almost every vertex to some subset of some part of κ ; since κ is
constant on its parts, the subset is irrelevant and may be taken to be an interval, leading to
the required Bn.

On the other hand, suppose that both κ and the entries of all An are uniformly bounded,
without loss of generality by 1. Then approximating κ by some n-by-n kernel, and using
a result of Borgs, Chayes, Lovász, Sós and Vesztergombi [9] that if two n-by-n kernels
bounded by 1 are within distance δ in the cut metric, then there are rearrangements of
the corresponding matrices that are within 32δ1/67 in the cut norm, one can find Bn with
‖Bn − κ‖� → 0.

2.6 Stability

In this subsection we shall prove our stability result, Theorem 1.3, and deduce Theorem 1.4.
As in [6], we adapt an argument of Luczak and McDiarmid [22] showing that for c > 1
constant, whp the giant component of G(n, c/n) has the property that if its vertex set is
divided into two pieces that are not too small, then there are many edges from one piece to
the other. We shall need the following deterministic lemma from [22].

Lemma 2.16 For any ε > 0, there exist η0 = η0(ε) > 0 and n0 such that the following holds.
For all n ≥ n0, and for all connected graphs G with n vertices, there are at most (1 + ε)n

bipartitions of G with at most η0n cross edges. �

Using this and Lemma 2.14, we shall prove the following lemma, which corresponds
roughly to the edge deletion case of Theorem 1.3.

Lemma 2.17 Let κ be an irreducible kernel and (An) a sequence of non-negative symmetric
matrices such that δ�(An, κ) → 0. For every ε > 0 there is a δ = δ(κ, ε) > 0 such that, whp,

C1(G
′
n) ≥ (ρ(κ) − ε)n

for every graph G′
n that may be obtained from G(An) by deleting at most δn edges.
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Proof We may assume that ρ(κ) > 0, as otherwise there is nothing to prove. Reducing ε if
necessary, we may and shall assume that ε < ρ(κ)/10.

Let Bδ be the ‘bad’ event that it is possible to delete at most δn edges from Gn = G(An)

so that in what remains no component contains more than (ρ(κ) − ε)n vertices; our aim is
to show that for some constant δ > 0 we have P(Bδ) → 0.

Suppressing the dependence on n, given 0 < γ < 1, let G1 = G((1 − γ )An) and G2 =
G(γAn). As before, taking G1 and G2 independent we may assume that G1 ∪ G2 ⊆ Gn =
G(An). As noted earlier, by [6, Theorem 6.4] we have ρ((1 − γ )κ) ↗ ρ(κ) as γ → 0. Fix
0 < γ < 1 such that ρ((1 − γ )κ) > ρ(κ) − ε/2.

As in [22], let U1 denote the largest component G1, chosen according to any rule if there
is a tie, and consider the event

A1 := {|U1| ≥ (ρ(κ) − ε/2)n}.

Since ρ((1 − γ )κ) > ρ(κ) − ε/2, applying Theorem 1.1 to G1 we see that A1 holds whp.
By Lemma 2.14, applied with γ κ in place of κ , there exist constants α > 0 and c > 0

such that, given two disjoint sets X, Y of vertices of G2 with |X|, |Y | ≥ εn/2, we have

P(X ∼αn Y ) ≥ 1 − e−cn (51)

for all large enough n, where X ∼k Y is the event that there are at least k vertex disjoint paths
from X to Y in G2. Let η = η0(c/2), where η0(·) is the function appearing in Lemma 2.16,
and set

δ = min{(ρ(κ) − ε/2)η,α/2}.
Suppose that B = Bδ and A1 both hold. Then there is a set E of at most δn edges of Gn

such that in G′
n = Gn −E there is no component with more than (ρ(κ)− ε)n ≤ |U1|− εn/2

vertices. In particular, there is a bipartition (X,Y ) of U1 with |X|, |Y | ≥ εn/2 such that there
is no path in G′

n from X to Y . But then two conditions must hold: (i) in G1 there are at most
δn ≤ η|U1| edges from X to Y , and (ii) it is possible to separate X from Y in G2 by deleting
at most δn < αn edges.

Let us condition on G1, assuming that A1 holds. Then by Lemma 2.16, if n is large
enough, there are at most (1 + c/2)|U1| ≤ (1 + c/2)n ≤ ecn/2 bipartitions (X,Y ) of U1 with
|X|, |Y | ≥ εn/2 satisfying property (i). By (51), for each of these bipartitions the probability
that it has property (ii) is at most e−cn. It follows that P(B ∩ A1) ≤ ecn/2e−cn = o(1). Since
A1 holds whp, we thus have P(B) = o(1), as required. �

To handle the deletion of vertices rather than edges we simply show that whp all small
sets of vertices meet few edges.

Lemma 2.18 Let κ be a kernel and δ > 0 a real number. Then there is a γ > 0 such that,
if (An) a sequence of non-negative symmetric matrices with δ�(An, κ) → 0, then whp every
set of at most γ n vertices of G(An) meets at most δn edges.

Proof For 0 < γ < 1 let f (γ ) = sup
∫

A×[0,1] κ(x, y) dμ(x)dμ(y), where the supremum is
over all subsets A of [0,1] with μ(A) ≤ γ . Since κ is integrable, we have f (γ ) → 0 as
γ → 0, and there is some γ0 with f (γ0) < δ/4. Let us fix γ ≤ γ0 chosen small enough that
(e/γ )γ ≤ eδ/20, say.
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Given a set U of vertices of Gn = G(An), let ν(U) denote the expectation of the sum of
the degrees of the vertices in U . If |U | ≤ γ n, then from the definition of the cut metric we
have

ν(U)/n ≤ f (γ ) + δ�(An, κ),

so for n large enough we have ν(U) ≤ δn/2 for all such U . The number of edges incident
with U has expectation at most ν(U), and is a sum of independent indicator variables. It
follows from the Chernoff bounds that the probability that a given U meets at least δn edges
is at most e−δn/10, say. Since there are at most

(
n

γ n

) ≤ (e/γ )γn ≤ eδn/20 choices for U with
|U | = �γ n�, the result follows. �

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3 Recall that G′
n will be obtained from Gn = G(An) by deleting at

most δn vertices, and then adding and deleting at most δn edges. Considering when C1(G
′
n)

is maximized or minimized, it clearly suffices to prove that if δ is chosen small enough,
then whp C1(G

′
n) ≥ (ρ(κ) − ε)n for all such G′

n obtained by deletion only, and that whp
C1(G

′
n) ≤ (ρ(κ) + ε)n for such G′

n obtained by adding edges to Gn.
The first statement is immediate from Lemmas 2.17 and 2.18 as in [6]; we omit the simple

details.
The second statement follows easily Lemma 2.11; the argument is identical to that in [6].

Simply choose k such that
∑

k′≤k ρk′(κ) ≥ 1 − ρ(κ) − ε/3; then by Lemma 2.11 there are
whp at least (1 − ρ(κ) − ε/2)n vertices of Gn in components of size at most k. Set δ =
ε/(4k), and note that adding at most δn edges changes the number of vertices in components
of size at most k by at most 2kδn = εn/2. �

We now turn to the proof of Theorem 1.4, giving exponential tail bounds on the size of
C1(Gn).

Proof of Theorem 1.4 In proving the lower bound on C1(Gn), we may assume that ε < ρ(κ),
and in particular that ρ(κ) > 0. Given a graph G, let D = D(G) be the minimal d such that
it is possible to delete d vertices from G to obtain a graph G′ with C1(G

′) ≤ (ρ(κ) − ε)n.
Note that if G1 and G2 differ only in the set of edges incident with some vertex v, then
|D(G1) − D(G2)| ≤ 1. Theorem 1.3 implies that for some δ > 0 we have ED(Gn) ≥ δn for
all large enough n. Constructing Gn by making n independent choices, where the ith choice
is the set of edges ji, j < i, it follows from McDiarmid’s inequality [23] that

P
(
C1(Gn) ≤ (ρ(κ) − ε)n

) = P(D(Gn) = 0) ≤ e−2(δn)2/n = e−2δ2n. (52)

(Of course, one can instead use the Hoeffding–Azuma inequality, in which case the factor
two in the exponent is in the denominator.)

Turning to the upper bounds on C1(Gn) and C2(Gn), fix k ≥ 1 with ρ≤k(κ) =∑
k′≤k ρk′(κ) ≥ 1 − ρ(κ) − ε/4, and consider Nn = N≤k(Gn). We have ENn/n → ρ≤k(κ)

by Lemma 2.8, so for n large enough we have ENn ≥ (1 − ρ(κ) − ε/3)n. We shall show
that

P
(|Nn − ENn| ≥ εn/2

) ≤ e−γ n (53)

for some γ > 0; then, for n large enough,
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P
(
C1(Gn) + C2(Gn) ≥ (ρ(κ) + ε)n

) ≤ P
(
N>k(Gn) + 2k ≥ (ρ(κ) + ε)n

)

≤ P
(
Nn ≤ ENn − εn/2

) ≤ e−γ n.

Together with (52) this gives the required bounds on C1(Gn). For the bound on C2(Gn), we
use (52) to bound C1(Gn) from below, and replace ε by ε/2.

In our proof of (53) the key point is that N≤k(G) is edge-Lipschitz: if G and G′ differ
in one edge, then |N≤k(G) − N≤k(G

′)| ≤ 2k. To prove concentration, we apply Talagrand’s
inequality [25] in the form of [19, Theorem 2.29]. With N = (

n

2

)
, the independent variables

Z1, . . . ,ZN are the indicator functions of the events that the individual edges are present.
Let f (Gn) = f (Z1, . . . ,ZN) = n − Nn = N>k(Gn). Then changing one Zi changes Nn,
and hence f , by at most ci = 2k. Whenever f (Gn) ≥ r , then taking (the edge set of) one
spanning tree for each component of size greater than k, there is a certificate of size at most
n for the event that f (Gn) ≥ r . Hence we may take ψ(r) = (2k)2n for all r , and Talagrand’s
inequality gives

P(|f (Gn) − m| ≥ t) ≤ 4e−t2/(16k2n),

where m is the median value of f (Gn). As usual (see, e.g., [19]), it then follows that the
mean and median are close (within O(

√
n)), and recalling that Nn = n− f (Gn), for n large

enough we obtain (53) with γ = ε2/(70k2), say. �

3 Extension to Hypergraphs

In this section we shall prove an extension of Theorems 1.1 and 1.2 to hypergraphs. Alter-
natively, this may be thought of as an extension of the random graph model with clustering
introduced in [8]. Most of our arguments are simple modifications of those in previous sec-
tions, so we shall only outline them. There are one or two places where adapting the proof
is not so easy, and there we shall give more detail.

Let (S,μ) be a probability space. We write Wr for the set of all integrable non-negative
functions W : S r → [0,∞), and Wr,sym for the subset of such functions that are symmetric
under permutations of the coordinates. Often we shall call a function κr ∈ Wr,sym an r-kernel.
A hyperkernel κ

˜
is simply a sequence (κr)r≥2, where κr is an r-kernel. The integral i(κ

˜
) of

a hyperkernel is defined to be

i(κ
˜
) =

∑

r≥2

r

∫

Sr

κr ,

and a hyperkernel κ
˜

is integrable if i(κ
˜
) < ∞.

The cut norm has a natural extension to r-kernels or indeed to L1(S r ) ⊃ Wr . As before,
we consider two slightly different definitions: for W ∈ L1(S r ) set

‖W‖�,1 := sup
S1,...,Sr

∣
∣
∣
∣

∫

S1×···×Sr

W(x1, . . . , xr )

∣
∣
∣
∣, (54)

where the supremum is over all r-tuples of measurable subsets of S .
Alternatively, we may consider

‖W‖�,2 := sup
‖f1‖∞,··· ,‖fr‖∞≤1

∣
∣
∣
∣

∫

Sr

f1(x1) · · ·fr(xr)W(x1, . . . , xr )

∣
∣
∣
∣. (55)
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Much of the time it makes no difference which version of ‖ · ‖� we consider: as before, in
the supremum in (55) we may assume that each fi is a ±1 function, and we see that

‖W‖�,1 ≤ ‖W‖�,2 ≤ 2r‖W‖�,1.

While (55) is the more natural definition from the point of view of functional analysis, we
shall in fact take (54) as the definition for most of this section, writing ‖W‖� for ‖W‖�,1—it
turns out that we obtain a very slightly stronger result this way.

Given a family W
˜

= (Wr)r≥2 with Wr ∈ Wr , set

i(W
˜

) =
∑

r≥2

r

∫

Sr

Wr,

‖W
˜

‖L1 =
∑

r≥2

r‖Wr‖L1 ,

and

‖W
˜

‖� =
∑

r≥2

r‖Wr‖�, (56)

where ‖ · ‖� = ‖ · ‖�,1. The reason for the factors of r above will become clear shortly.
Note that while considering a single value of r , it is irrelevant whether we use ‖ · ‖�,2

or ‖ · ‖�,1. However, as soon as we sum cut norms for different r , the potential factor of
up to 2r may make a difference. All our results will apply using ‖ · ‖�,2 instead of ‖ · ‖�,1,
but they would then be slightly weaker, as fewer sequences of hyperkernels converge in the
resulting norm.

Note that for W ∈ L1(S r ) we trivially have
∣
∣
∣
∣

∫

Sr

W

∣
∣
∣
∣ ≤ ‖W‖� ≤ ‖W‖L1 ,

so

|i(W
˜

)| ≤ ‖W
˜

‖� ≤ ‖W
˜

‖L1 .

As in [8], the quantity i(W
˜

) will play a key role in various approximation arguments; the
inequality |i(W

˜
)| ≤ ‖W

˜
‖� is key to making these arguments work here.

Given a hyperkernel κ
˜

and a measure-preserving bijection τ : S → S , let κ
˜

(τ ) = (κ(τ)
r )r≥2

be the hyperkernel defined by

κ(τ)
r (x1, . . . , xr ) = κr(τ (x1), . . . , τ (xr)).

We call a κ
˜

(τ ) a rearrangement of κ
˜

, and write κ
˜

′ ∼ κ
˜

if κ
˜

′ is a rearrangement of κ
˜

. The cut
metric extends to hyperkernels on [0,1] as follows:

δ�(κ
˜
, κ
˜

′) = inf
κ
˜

′′∼κ
˜

′ ‖κ˜− κ
˜

′′‖�.

For hyperkernels on general probability spaces, which need not be the same, we use cou-
plings to define δ�.

Turning to graphs, our next aim is to define an extension of the random graph G(An).
By an n-by-n hypermatrix Hn we mean a sequence (Hn,r )r≥2 where each Hn,r is an

r-dimensional array with entries hi1i2...ir ≥ 0, 1 ≤ i1, . . . , ir ≤ n, that is symmetric under
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all permutations of the coordinates. There is a hyperkernel κ
˜

= κ
˜
(Hn) = (κr )r≥2 naturally

associated to a hypermatrix Hn: each κr is a piecewise constant function on [0,1]r whose
value on a certain hypercube of side 1/n is given by the appropriate entry of Hn,r .

Turning to the random hypergraph, as in [8], the natural normalization in the hypergraph
case is unfortunately not the same as in the graph case. Roughly speaking, for each entry
hi1i2...ir of each Hn,r , we shall add a hyperedge on the corresponding vertices to our hy-
pergraph with probability hi1i2...ir /nr−1. Unfortunately this means that the probability that a
particular r-vertex hyperedge is present is then (roughly) r!hi1i2...ir /nr−1, and in particular
2hij /n in the graph case.

Formally, given a hypermatrix Hn, let H(Hn) be the random hypergraph on [n] in which
edges are present independently, and for any 2 ≤ r ≤ n and i1 < i2 < · · · < ir , the probability
that the hyperedge i1i2 · · · ir is present is

min{r!hi1i2...ir /nr−1,1}.
Alternatively, it is often to convenient to consider the Poisson multi-hypergraph version of
H(Hn): here the number of copies of a hyperedge i1i2 · · · ir is simply Poisson with mean
r!hi1i2...ir /nr−1, and these numbers are independent for different hyperedges.

Turning to the graph, let G(Hn) be the simple graph underlying H(Hn), obtained by
replacing each r-vertex hyperedge by a complete graph on r vertices, and replacing any
multiple edges by single edges. In the Poisson multi-hypergraph variant, we keep multiple
edges.

Remark 3.1 We call an entry hi1i2...ir of some Hn,r diagonal if ik = i� for some k = �. Note
that in the definitions of H(Hn) and G(Hn), such entries play no role. We shall see later that,
as in the graph case, convergence of (Hn) to κ

˜
in δ� is unaffected by setting all diagonal

entries to 0, so (once we have shown this), we may assume without loss of generality that all
diagonal entries are 0. However, we do not impose this as a condition of our results, since
there is no need to do so.

Given a hyperkernel κ
˜

, let Xκ
˜

be the compound Poisson Galton–Watson branching
process associated to κ

˜
; for the formal definition see [8]. We write ρ(κ

˜
) for the survival

probability of Xκ
˜

.
As in [8], let κe be the edge kernel corresponding to κ

˜
= (κr), defined by

κe(x, y) =
∑

r≥2

r(r − 1)

∫

Sr−2
κr(x, y, x3, x4, . . . , xr ) dμ(x3) · · · dμ(xr). (57)

Note that κe may be viewed as a (rescaled) 2-dimensional marginal of the hyperkernel κ
˜

.
As in [8], a hyperkernel κ

˜
is irreducible if the corresponding edge kernel is irreducible. The

natural extension of Theorem 1.1 to hyperkernels is as follows.

Theorem 3.2 Let κ
˜

be an irreducible, integrable hyperkernel and (Hn) a sequence of hyper-

matrices such that δ�(Hn, κ
˜
) → 0. Then C1(G(Hn))/n

p→ ρ(κ
˜
), and C2(G(Hn)) = op(n).

Arguing as in the proof of Lemma 1.7, one can show that Theorem 3.2 extends the cor-
responding result of [8].

In Theorem 3.2 we define δ� using ‖ · ‖�,1 for the cut norm. Since ‖ · ‖�,1 ≤ ‖ · ‖�,2, the
corresponding result for the more natural definition using ‖ · ‖�,2 follows immediately.
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The heart of the proof of Theorem 3.2 will be Lemma 3.3 below, showing that under an
additional assumption, the number of vertices in components of each fixed size is ‘what it
should be’. Later we shall first remove the additional assumption, and then pass from ‘large’
components to a single giant component.

We say that a hyperkernel κ
˜

= (κr) is R-bounded if κr is zero for r > R, in which case
we shall often speak of the hyperkernel κ

˜
= (κr)

R
r=2. Correspondingly, a hypermatrix Hn =

(Hn,r )r≥2 is R-bounded if Hn,r is the zero matrix for r > R.
As in [8], we write ρk(κ

˜
) for the probability that the branching process Xκ

˜
consists of k

particles in total. Recall that Nk(G) denotes the number of vertices of a graph G in compo-
nents of order k.

Lemma 3.3 Let R ≥ 2 be fixed. Suppose that κ
˜

is an R-bounded hyperkernel and (Hn) is
a sequence of R-bounded hypermatrices such that δ�(Hn, κ

˜
) → 0. Then for each k ≥ 1 we

have Nk(G(Hn))/n
p→ ρk(κ

˜
).

The proof of this lemma will take up the next several subsections. The deduction of Theo-
rem 3.2 will then be relatively easy.

3.1 Eliminating Large Edge Probabilities

Given a hypermatrix Hn, for r ≥ 2 let An,r be the matrix with entries

a
(r)
ij = n−(r−2)

∑

i3

∑

i4

· · ·
∑

ir

hij i3i4...ir , (58)

and let

An =
∑

r≥2

r(r − 1)An,r (59)

be the marginal matrix corresponding to Hn, with entries aij . Note that the kernel κAn de-
fined from An is simply the edge kernel κe corresponding to κ

˜
(Hn). Also, in the Poisson

multi-graph form of our model, if all diagonal entries are zero, then the expected number of
ij edges in G(Hn) is exactly aij /n. (See Remark 3.1.)

Given Wr ∈ L1(S r ), let Ŵr be its marginal with respect to the first two coordinates,
defined by

Ŵr (x, y) =
∫

Sr−2
Wr(x, y, x3, . . . , xr ) dμ(x3) · · · dμ(xr).

Note that

‖Ŵr‖� ≤ ‖Wr‖�. (60)

Indeed, to see this simply take S3, . . . , Sr = S in (54), or f3, . . . , fr = 1 in (55).
An immediate consequence is the following lemma.

Lemma 3.4 Let R ≥ 2 be fixed, and suppose that (Hn) is a sequence of R-bounded hy-
permatrices and κ

˜
an R-bounded hyperkernel with δ�(Hn, κ

˜
) → 0. Then δ�(An, κe) → 0,

where An is the marginal matrix of Hn, and κe is the edge kernel of κ
˜

.
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Proof By definition of δ�, there are measure-preserving bijections τn : S → S such that
‖κ
˜
(Hn)− κ

˜
(τn)‖� → 0. With κ

˜
= (κr)

R
r=2, writing κ ′

r for the r-kernel corresponding to Hn,r ,

this says exactly that
∑R

r=2 r‖κ ′
r −κ(τn)

r ‖� → 0. Using (60), and noting that taking marginals
commutes with rearrangement, it follows that

∑R

r=2 r‖κAn,r − κ̂ (τn)
r ‖� → 0. Since ‖ · ‖� is

a norm on L1(S 2), we have

‖κAn − κe
(τn)‖� ≤

R∑

r=2

r(r − 1)‖κAn,r − κ̂ (τn)
r ‖� → 0,

since changing the factor r to r(r − 1) does not affect convergence to zero. Hence
δ�(An, κe) → 0. �

Remark 3.5 To obtain a result analogous to (3.4) without the R-boundedness assumption,
we would have to redefine δ� for hyperkernels, replacing the factor r in (56) by a factor
r(r − 1), and only considering ‘edge-integrable’ limits κ

˜
, i.e., hyperkernels with

∑
r r(r −

1)
∫

κr finite.

Let us call a sequence (Hn) of hypermatrices well behaved if two conditions hold: every
diagonal entry is zero, and maxAn/n → 0 as n → ∞, where maxAn is the largest entry of
the n-by-n marginal matrix An corresponding to Hn. Note that if (Hn) is well behaved, then
the probability that some particular edge ij is present in G(Hn) is o(1) as n → ∞, where
the bound is uniform over edges.

Lemma 3.6 Let R ≥ 2 be fixed, and suppose that (Hn) is a sequence of R-bounded hyper-
matrices and κ

˜
is an R-bounded hyperkernel with δ�(Hn, κ

˜
) → 0. Then there is a sequence

of well-behaved R-bounded hypermatrices (H ′
n) such that ‖κ

˜
(Hn) − κ

˜
(H ′

n)‖L1 → 0 and
δ�(H ′

n, κ
˜
) → 0.

Proof Let An be the marginal matrix corresponding to Hn and let κe the edge kernel cor-
responding to κ

˜
. Then by Lemma 3.4 we have δ�(An, κe) → 0. By Lemma 2.1 there is a

function M(n) with M(n) = o(n) such that only o(n) entries of An exceed M(n), and the
sum of these entries is o(n2). This immediately implies that the sum of any n entries of An

is o(n2).
Call an entry aij of An bad if either aij > M(n) or i = j . Let S be the sum of the bad

entries, so S = o(n2). To define H ′
n, simply modify Hn by setting to 0 any entry hi1i2...ir of

Hn,r such that aiki� is bad for some pair ik , i�, k < �. (In other words, we replace all entries
contributing to bad entries aij in the marginal by zero.) Then H ′

n is a hypermatrix, and its
marginal A′

n = (a′
ij ) satisfies a′

ij ≤ aij with a′
ij = 0 whenever aij is bad. Thus (H ′

n) is well
behaved.

Finally, for each r , we may think of modifying Hn,r to obtain H ′
n,r in r2 stages, in each

one fixing k and � and setting to zero entries hi1i2...ir for which aiki� is bad. The sum of the
entries set to zero at each stage is at most nr−2S. It follows easily that

‖κ
˜
(Hn) − κ

˜
(H ′

n)‖L1 ≤
R∑

r=2

r2Sn−2 = O(S/n2) = o(1).

The final statement follows immediately, since

δ�(Hn,H
′
n) = δ�(κ

˜
(Hn), κ

˜
(H ′

n)) ≤ ‖κ
˜
(Hn) − κ

˜
(H ′

n)‖� ≤ ‖κ
˜
(Hn) − κ

˜
(H ′

n)‖L1 . �
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An immediate consequence of Lemma 3.6 is the following rather informally worded
corollary.

Corollary 3.7 In proving Lemma 3.3, we may assume that (Hn) is well behaved.

Proof Let (Hn) and κ
˜

satisfy the assumption of Lemma 3.3, and define (H ′
n) as in

Lemma 3.6. Let G′
n = G(H ′

n) and Gn = G(Hn). There is a natural coupling of H(H ′
n) and

H(Hn) in which the expected number of r-vertex hyperedges in the symmetric difference
is at most n‖κH ′

n,r
− κHn,r ‖L1 (with equality if all diagonal entries are zero, at least in the

Poisson multi-hypergraph version); by Lemma 3.6 this number is o(n). Since each hyper-
edge has at most R vertices, and so contributes at most

(
R

2

) = O(1) edges, summing over
2 ≤ r ≤ R we have E|E(G′

n) � E(Gn)| = o(n).

Now δ�(H ′
n, κ

˜
) → 0, so if Lemma 3.3 holds in the well-behaved case, then Nk(G

′
n)/n

p→
ρk(κ

˜
). Since adding or deleting an edge to a graph G changes the number of vertices in com-

ponents of order k by at most 2k, we have E|Nk(Gn) − Nk(G
′
n)| = o(n), so Nk(Gn)/n

p→
ρk(κ

˜
) follows. �

3.2 Hypertree Integrals

Throughout this subsection, we fix an integer R ≥ 2. All hyperkernels will be R-bounded,
and all edges of all hypergraphs will have size at most R.

A hypertree is simply a connected hypergraph containing no cycles, or, equivalently, a
connected hypergraph H in which |H| = 1+∑

(|Ei |−1), where the sum runs over all edges
Ei of H.

Given a hyperkernel κ
˜

= (κr)r≥2 and a hypertree H, we shall define tisol(H, κ
˜
) in analogy

with (24). Unfortunately, there is a difference in the normalization, and the marginals need
some further explanation. For the latter, given Wr ∈ L1(S r ), let

λWr (x) = λ
(1)
Wr

(x) =
∫

Sr−1
Wr(x, x2, . . . , xr ) dμ(x2) · · · dμ(xr).

The marginal λ
(i)
Wr

of Wr with respect to the ith coordinate is defined similarly.
Given κ

˜
= (κr)

R
r=2, let

λ(x) = λκ
˜
(x) =

∑

r

rλκr (x). (61)

The reason for the extra factor r is that, as noted earlier, we essentially add a hyperedge on
each ordered r-tuple v1, . . . , vr with a probability κr/nr−1, and because a particular vertex
could appear in r places in the ordered r-tuple, it is then λ(x) that gives the expected number
of hyperedges containing a given vertex.

We now define tisol(H, κ
˜
) as an integral over S |H| with one variable xi for each vertex i of

H. The integrand has a factor r!κr(xi1 , . . . , xir ) for each r-element hyperedge E = i1i2 . . . ir

of H, and a factor e
−λκ

˜
(xi ) for each i.

With this definition, Theorem 2.3 extends to the hyperkernel context.

Theorem 3.8 Let R ≥ 2 be fixed, and let H be a hypertree in which each hyperedge has at
most R elements. Then κ

˜
�→ tisol(H, κ

˜
) is a bounded map on the space W (R)

sym of R-bounded
hyperkernels and is Lipschitz continuous in the cut norm. In other words, there exists a
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constant C (depending on R and H only) such that tisol(H, κ
˜
) ≤ C for all κ

˜
∈ W (R)

sym, and
|tisol(H, κ

˜
) − tisol(H, κ

˜
′)| ≤ C‖κ

˜
− κ

˜
′‖� for all κ

˜
, κ
˜

′ ∈ W (R)
sym.

Rather than give a formal proof, we shall briefly describe the modifications needed to
the arguments in Sect. 2.2. Note that we make take ‖ · ‖� = ‖ · ‖�,1 or ‖ · ‖� = ‖ · ‖�,2 in
Theorem 3.8; on R-bounded hyperkernels, these norms are equivalent. As in Sect. 2.2, in
this subsection we use the norm ‖ · ‖�,2.

Firstly, note that Lemma 2.2 extends immediately: if Wr,W
′
r ∈ L1(S r ), then

‖λWr − λW ′
r
‖L1 ≤ ‖Wr − W ′

r‖�. (62)

(Perhaps the nicest way to see this is to note that, generalizing (60) in the natural way, the
cut norm of any d-dimensional marginal of some W ∈ L1(Sr ) is at most ‖W‖�, and that on
L1(S), the L1 norm and cut norm coincide.)

Fix H. Extending (25), suppose that for each r-element hyperedge E of H we have
a WE ∈ Wr , where Wr is the set of (not necessarily symmetric) non-negative functions
Wr ∈ L1(S r ). Then we may define t0(H, (WE)E∈E(H)) in analogy with (25), again without
the exponential factors in tisol(H, κ

˜
). To reintroduce these, given any Wr ∈ Wr and a =

(a1, . . . , ar ) with each ai ≥ 0, set

W a
r (x1, . . . , xr ) = Wr(x1, . . . , xr )

r∏

i=1

exp
(−aiλ

(i)
Wr

(xi)
)
,

in analogy with (26).
The proof of Lemma 2.4 extends mutatis mutandis to give the following result.

Lemma 3.9 For every fixed a ≥ 0, the map W �→ W a is Lipschitz continuous on Wr in the
cut norm; more precisely,

‖W a
1 − W a

2 ‖� ≤ (2r + r2r/e)‖W1 − W2‖�

for all W1,W2 ∈ Wr . Also, for every W ∈ Wr , the ith marginal of W a is bounded by e−1/ai .

As before, the first 2r can be replaced by 1, but we do not care about the constant.
There is one minor additional complication not present in the graph case, which we now

describe. Given a hyperkernel κ
˜

= (κr)
R
r=2, for each hyperedge E of H with r vertices define

WE ∈ Wr by

WE(x1, . . . , xr ) = κr(x1, . . . , xr )

r∏

i=1

exp
(−λκ

˜
(x)/di

)
, (63)

where di is the degree in H of the ith vertex of E (in some arbitrary ordering). Then we
have

tisol(H, κ
˜
) = t0(H, (WE)E∈E(H)), (64)

corresponding to (27). In the graph case we simply had Wij = κ(1/di ,1/dj ), but this no longer
holds, since the marginals appearing in (63) are those of κ

˜
, not simply those of the kernel κr

appropriate for r-element hyperedges. The extra complication is dealt with by Lemma 3.10
below.
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Given B > 0, let Wr,B be the set of W ∈ Wr with all marginals bounded by B . If f ∈
L1(S) and W ∈ Wr , define f W by

(f W)(x1, . . . , xr ) = f (x1)W(x1, . . . , xr ).

Suppose that W ∈ Wr,B and f1, f2 ∈ L1(S). Then

‖(f1 − f2)W‖� ≤ ‖(f1 − f2)W‖L1 = ‖(f1 − f2)λ‖L1 ≤ B‖(f1 − f2)‖L1 , (65)

where λ is the first marginal of W . Now suppose that f1, . . . , fr , f
′
1, . . . , f

′
r ∈ L1(S) with

‖fi‖∞,‖f ′
i ‖∞ ≤ 1 for each i, and that W , W ′ ∈ Wr,B . Defining f1 · · ·frW and f ′

1 · · ·f ′
r W

′

in the obvious way, we have

‖(f1 · · ·frW) − (f ′
1 · · ·f ′

r W
′)‖� ≤ ‖W − W ′‖� + B

r∑

i=1

‖fi − f ′
i ‖L1 . (66)

Indeed, we may write the difference as (f1 · · ·fr)(W − W ′) plus r terms whose cut norms
may be bounded by (65); the cut norm of the first term is at most ‖W −W ′‖� by the analogue
of (23).

With H fixed, let B = �(H)/e.

Lemma 3.10 For each hyperedge E of H, the map κ
˜

�→ WE is Lipschitz continuous with
respect to the cut norm, and WE belongs to Wr,B .

Proof Let r be the number of vertices in E, and let κ
˜

= (κs)
R
s=2. Let W̃E = κa

r , where a =
(r/d1, . . . , r/dr). Since each κs is symmetric, all its marginals are equal; we write λs for any
of these marginals. Then WE = f1 · · ·frW̃E , where

fi(xi) = exp
(−λκ

˜
(xi)/di + rλr(xi)/di

) = exp

(

−
∑

s =r

sλs(xi)/di

)

.

Since all marginals λs are non-negative, we have 0 < fi(x) ≤ 1. Applying Lemma 3.9 to κr

tells us that W̃E ∈ Wr,B , and that the map κ
˜

�→ W̃E is Lipschitz continuous. Summing (62)
over 2 ≤ s ≤ R, s = r , tells us that each fi varies continuously (in L1) with κ

˜
, and Lipschitz

continuity of κ
˜

�→ WE then follows from (66). Finally, W̃E ∈ Wr,B and 0 < fi ≤ 1 for each
i trivially implies WE ∈ Wr,B . �

In the light of (64) and Lemma 3.10, it remains only to prove an analogue of Lemma 2.7,
showing that t0(H, (WE)E∈H) is Lipschitz continuous with respect to the cut norm when
we assume that each WE ∈ Wr,B . The proofs of Lemmas 2.6 and 2.7 carry over with trivial
modifications, noting for the latter that when we delete a single hyperedge E with r vertices,
our hypertree splits into r hypertrees (some of which may be trivial).

3.3 Small Components

With the preparation above behind us, the argument of Sect. 2.3 goes through easily. Let
us comment very briefly on the changes. Firstly, it is more convenient in this subsection to
consider hypergraphs throughout.
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Given a hypergraph H, we write Nk(H) for the number of vertices in components of
order k, N t

k(H) for the number in tree components of order k, and N c
k (H) for the number in

non-tree components.
The proof of Lemma 2.10 carries over easily to give the following result.

Lemma 3.11 Let (Hn) be a well-behaved R-bounded sequence of hypermatrices, and Hn =
H(Hn) the corresponding random (Poisson multi-)hypergraphs. Then for any fixed k we
have EN c

k (Hn) = o(n).

Proof As in the graph case, we consider the number M≤k(H) of components of a hypergraph
H that contain a cycle and have at most k vertices. Since N c

k (Hn) ≤ kM≤k(H), it suffices to
prove that EM≤k(Hn) = o(n).

When adding a hyperedge E to a hypergraph H, the quantity M≤k can increase only if
E creates a cycle, i.e., contains at least two vertices i and j from some component C of H,
and after adding H, the component containing E has order at most k. This certainly implies
that E contains a pair {i, j} of distinct vertices from some component of order at most k.
The rest of the proof follows that of Lemma 2.10, using the fact that (Hn) well behaved
guarantees that the expected number of edges of Hn containing a particular pair {i, j} of
vertices is o(1), uniformly in i and j . �

The remaining arguments in Sect. 2.3 carry over easily.

Proof of Lemma 3.3 Let (Hn) be a sequence of R-bounded hypermatrices converging in δ�
to an R-bounded hyperkernel κ

˜
. By Corollary 3.7 we may assume that (Hn) is well behaved.

Given a hyperedge E = i1 . . . ir with vertices contained in [n], let hE = hi1...ir be
the corresponding entry of Hn,r , and μE = r!hEn−(r−1) the expected number of copies
of E in Hn = H(Hn). Given a connected simple hypergraph F on [k] and a sequence
v = (v1, . . . , vk) of vertices of Hn, for each hyperedge E = i1 . . . ir of F let v(E) = vi1 . . . vir

be the image of E under the map i �→ vi .
As before, for a good sequence v, let pv(F ) = pv(F ,Hn) be the probability that the

image of F under i �→ vi is present in Hn, and forms a component of Hn. Thus

pv(F ) =
∏

E∈E(F )

μv(E)

∏

E∈E0

exp(−μE),

where E0 is the set of all potential edges of Hn that share at least one vertex with
{v1, . . . , vk}. For any v, set

p0
v(F ) =

∏

E∈E(F )

μv(E)

k∏

i=1

exp(−λn(vi)),

where λn(v) is the sum of the probabilities of all hyperedges meeting v. Note that λn is
exactly the marginal of the hyperkernel corresponding to Hn, but here viewed as a function
on [n] rather than on [0,1].

If v is good, the only difference between p0
v(F ) and pv(F ) is that for each E ∈ E0 sharing

s ≥ 2 vertices with {v1, . . . , vk}, the factor exp(−μE) appears s times in p0
v(F ) but only

once in pv(F ). Since (Hn) is well behaved, for any i = j the sum of μE over hyperedges E

containing both i and j is o(1), so it follows as before that p0
v(F ) ∼ pv(F ).
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Let T be a hypertree. Summing p0
v(T ) over all sequences v we obtain exactly

ntisol(T , κ
˜
). The rest of the proof of Lemma 2.8 goes through essentially unchanged to

show that the contribution from bad sequences v is negligible, and summing over hyper-
trees T , and using Lemma 3.11, it follows that ENk(Hn)/n → ρk(κ

˜
). (Note that (43) holds

unchanged for hypergraphs too, with the normalizations used here.) As before, considering
disjoint copies of two trees gives convergence in probability, as required. �

Finally, we note that the result we have just proved extends from R-bounded hyperkernels
to general hyperkernels.

Corollary 3.12 Let κ
˜

be an integrable hyperkernel and (Hn) a sequence of hypermatrices

with δ�(Hn, κ
˜
) → 0, and set Gn = G(Hn). Then Nk(Gn)/n

p→ ρk(κ
˜
).

Proof Firstly, it makes no difference whether we work with the hypergraphs Hn = H(Hn)

or the underlying graphs Gn = G(Hn), as these have exactly the same components.
Fix k ≥ 1. Let κ

˜
= (κr)r≥2. For R ≥ 2, set κ

˜
R = (κr)

R
r=2, and similarly define HR

n by
omitting all matrices Hn,r with r > R. Fix ε > 0. Since κ

˜
is integrable, we have i(κ

˜
R) ↗

i(κ
˜
) as R → ∞. By Theorem 2.13(i) of [8], we have ρk(κ

˜
R) → ρk(κ

˜
). Hence there is some

R such that i(κ
˜

− κ
˜

R) ≤ ε and

|ρk(κ
˜
) − ρk(κ

˜
R)| ≤ ε. (67)

Fix such an R. From the definition of δ�, we have

i
(
κ
˜
(Hn) − κ

˜
(HR

n )
) ≤ i(κ

˜
− κ

˜
R) + δ�

(
κ
˜
(Hn) − κ

˜
(HR

n ), κ
˜

− κ
˜

R
)

≤ ε + δ�(κ
˜
(Hn), κ

˜
) = ε + o(1).

Coupling Hn and HR
n = H(HR

n ) in the natural way so that the former contains the latter, the
expected sum of the sizes of the extra hyperedges in Hn is at most ni

(
κ
˜
(Hn) − κ

˜
(HR

n )
) ≤

(ε + o(1))n. Since adding a clique of size r to a graph G changes the number of vertices in
components of size at most k by at most rk, it follows that for k fixed we have E|Nk(Hn) −
Nk(HR

n )| ≤ kεn + o(n), so for n large enough,

P
(|Nk(Hn) − Nk(HR

n )| ≥ k
√

εn
) ≤ 2

√
ε, (68)

say. Applying Lemma 3.3 to the sequence (HR
n ), we have Nk(HR

n ) = ρk(κ
˜

R)n+op(n). Since
ε > 0 was arbitrary, the result follows from this, (67) and (68). �

3.4 Proof of Theorem 3.2

We have just seen that for each k we have the ‘right’ number of vertices of G(Hn) in compo-
nents of order k; it remains only to show, using the additional assumption of irreducibility,
that almost all vertices in large components in fact form a single giant component.

Proof of Theorem 3.2 As usual, Corollary 3.12 implies that there is some ω = ω(n) → ∞,
which we may take to be o(n), such that

N≥ω(G(Hn))/n
p→ ρ(κ

˜
). (69)
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Let Gn = G(Hn). As in the proof of Theorem 1.1, in the light of (69) it suffices to show
that C1(Gn) ≥ ρ(κ

˜
)n + op(n). In doing so we may of course assume that ρ(κ

˜
) > 0.

Fix ε > 0. Theorem 2.12(i) of [8] tells us that as γ → 0 we have ρ((1 − γ )κ
˜
) ↗ ρ(κ

˜
),

so there is some γ with ρ((1 − γ )κ
˜
) > ρ(κ

˜
) − ε. In the Poisson multi-hypergraph form, we

may write Hn = H(Hn) as H′
n ∪ H′′

n where H′
n = H((1 − γ )Hn), H′′

n = H(γHn), and H′
n

and H′′
n are independent.

Writing G′
n for the graph corresponding to H′

n, applying (69) to (H′
n) there is some

ω = ω(n) → ∞ such that

N≥ω(G′
n) ≥ (ρ((1 − γ )κ

˜
) − ε)n ≥ (ρ(κ

˜
) − 2ε)n

holds whp. We shall attempt to use the hyperedges of H′′
n to join up the large components

of G′
n.

As in [8], the trick is to select one edge from each hyperedge, to obtain a graph. More
precisely, let G′′

n be the random multi-graph obtained from H′′
n by replacing each hyperedge

E of order r by one of the
(
r

2

)
corresponding edges, chosen uniformly at random. From the

Poisson nature of the model, different edges in G′′
n are present independently.

Let Bn = 2
∑

r≥2 An,r , where An,r is the matrix defined by (58). The edge probabilities
in G′′

n are given by γ times the entries of Bn. (Note that the coefficient of An,r is smaller
here than in (59), by a factor 1/

(
r

2

)
, corresponding to choosing one out of

(
r

2

)
edges.)

Let τ be the rescaled edge-kernel defined by

τ(x, y) = 2
∑

r≥2

∫

Sr−2
κr(x, y, x3, x4, . . . , xr ) dμ(x3) · · · dμ(xr),

i.e., by replacing the factor r(r − 1) in (57) by a factor 2. Using (60) and arguing as in the
proof of Lemma 3.4, but replacing each appearance of r(r − 1) by 2, it is easy to check that
δ�(κBn, τ ) → 0; this time, since 2 ≤ r , there is no need to truncate the sums over r .

Now κ
˜

is irreducible by assumption, which means exactly that κe is irreducible. Since
κe and τ are non-zero in the same places, it follows that τ is irreducible. Since the graphs
G′′

n have the distribution G(γBn), and δ�(Bn, τ ) → 0, Lemma 2.14 tells us that given any
two sets X and Y of εn vertices of G′′

n, the probability that there is no path in G′′
n from

X to Y is exponentially small. As before we may apply this to all partitions of the large
components of G′

n into two sets each containing at least εn vertices to deduce that whp we
have C1(Gn) ≥ (ρ(κ

˜
) − 3ε)n, completing the proof. �

Theorem 3.2 implies a result for branching processes corresponding to Theorem 1.9; we
leave the details to the reader.

Finally, let us note that using the trick of selecting one edge from each hyperedge above,
it is very easy to extend Theorem 1.3 to the graphs G(Hn) considered in Theorem 3.2.
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